• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

玄武岩纤维风积沙混凝土单轴受压应力-应变试验研究

董伟 泽里罗布 银英姿 薛刚

董伟, 泽里罗布, 银英姿, 薛刚. 玄武岩纤维风积沙混凝土单轴受压应力-应变试验研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240098
引用本文: 董伟, 泽里罗布, 银英姿, 薛刚. 玄武岩纤维风积沙混凝土单轴受压应力-应变试验研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240098
DONG Wei, ZELI Luobu, YIN Yingzi, XUE Gang. Experimental Study on Uniaxial Compressive Stress–Strain of Basalt Fiber Aeolian Sand Concrete[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240098
Citation: DONG Wei, ZELI Luobu, YIN Yingzi, XUE Gang. Experimental Study on Uniaxial Compressive Stress–Strain of Basalt Fiber Aeolian Sand Concrete[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240098

玄武岩纤维风积沙混凝土单轴受压应力-应变试验研究

doi: 10.3969/j.issn.0258-2724.20240098
基金项目: 国家自然科学基金项目(52268044)
详细信息
    作者简介:

    董伟(1987—),男,副教授,博士,研究方向为建筑新材料,E-mail:dw617@126.com

  • 中图分类号: TU528

Experimental Study on Uniaxial Compressive Stress–Strain of Basalt Fiber Aeolian Sand Concrete

  • 摘要:

    为研究不同玄武岩纤维(BF)掺量下风积沙混凝土(ASC)轴心受压力学性能,试验以0%纤维掺量的混凝土为基准组,设计不同纤维掺量(0.05%、0.10%、0.15%和0.20%)的风积沙混凝土(BF-ASC),分析BF体积分数对风积沙混凝土轴心抗压强度、峰值应力、峰值应变和弹性模量的影响. 结果表明:混凝土峰值应力和弹性模量均随着纤维体积分数的增加呈现先增大后减小的趋势,当BF掺量为0.10%时,其峰值应力和弹性模量分别为基准组的115.6%和112%;峰值应变和韧性指数则随纤维体积分数增大而增大,掺量为0.20%时,其峰值应变较基准组增长34.92%,韧性指数增长7.2%;BF-ASC应力-应变全曲线变化同普通风积沙混凝土都经历了弹性、塑性和破坏3个阶段;依据Carreira and Chu模型及过镇海模型对BF-ASC本构关系进行分段描述,其上升段符合Carreira and Chu本构模型,下降段符合过镇海模型;对考虑BF掺量的BF-ASC单轴受压本构模型进行回归分析,相关系数均大于0.98,该本构模型与试验曲线吻合度较高.

     

  • 图 1  轴压试验及加载示意

    Figure 1.  Axial compression test and loading

    图 2  BF-ASC单轴受压破坏形态

    Figure 2.  Uniaxial compressive failure patterns of BF-ASC

    图 3  不同BF掺量的BF-ASC单轴压缩应力-应变曲线

    Figure 3.  Uniaxial compressive stress–strain curves of BF-ASC with different BF contents

    图 4  峰值应力

    Figure 4.  Peak stress

    图 5  峰值应变

    Figure 5.  Peak strain

    图 6  弹性模量

    Figure 6.  Elastic modulus

    图 7  能量比法计算图

    Figure 7.  Calculation of energy ratio method

    图 8  韧性指数和脆性指数与BF掺量的关系

    Figure 8.  Relationship between toughness index and brittleness index with BF content

    图 9  BF-ASC单轴受压应力-应变曲线理论模型与试验曲线比较

    Figure 9.  Comparison between theoretical model of stress–strain curve and test curve of BF-ASC under uniaxial compression

    图 10  nb对混凝土应力-应变曲线的影响

    Figure 10.  Influence of shape parameters n and b on concrete stress–strain curve

    图 11  nbF的关系

    Figure 11.  Relationship between shape parameters and F

    表  1  骨料物理性能指标

    Table  1.   Physical properties of aggregates

    种类 表观密度/(kg·m−3 堆积密度/(kg·m−3 含泥量/% 含水量/% 细度模数 颗粒级配/mm
    石子 2680 1650 2.3 0.3 5~25
    河砂 2630 1530 1.0 2.2 2.9 <4.75
    风积沙 2650 1580 0.4 0.3 0.7 0.075~0.250
    下载: 导出CSV

    表  2  BF性能指标

    Table  2.   Properties of BF

    长度/mm 直径/μm 含水率/% 弹性模量/GPa 拉伸强度/MPa 断裂强度/MPa 断裂伸长率/% 密度/(kg·m−3
    20 16 0.1 95 2836 1650 3.1 2650
    下载: 导出CSV

    表  3  玄武岩纤维风积沙混凝土配合比

    Table  3.   Mix design of BF-ASC kg/m3

    编号混凝土配合比
    水泥粉煤灰风积沙石子外加剂纤维掺量
    BF-036040582.4145.6109218080
    BF-0536040582.4145.6109218081.33
    BF-1036040582.4145.6109218082.65
    BF-1536040582.4145.6109218083.98
    BF-2036040582.4145.6109218085.30
    下载: 导出CSV

    表  4  韧性指数和脆性指数

    Table  4.   Toughness index I and brittleness index M

    试件编号 I M
    BF-0 2.388 0.721
    BF-05 2.424 0.702
    BF-10 2.440 0.694
    BF-15 2.476 0.677
    BF-20 2.506 0.664
    下载: 导出CSV

    表  5  本构模型拟合参数及相关系数

    Table  5.   Fitting parameters and correlation coefficient of constitutive model

    编号 上升段 n 相关系数 R2 下降段 b 相关系数 R2
    BF-0 4.873 0.9995 4.227 0.9927
    BF-05 3.113 0.9993 3.930 0.9871
    BF-10 3.151 0.9965 3.684 0.9861
    BF-15 2.580 0.9983 3.052 0.9881
    BF-20 2.069 0.9992 2.412 0.9872
    下载: 导出CSV
  • [1] 褚洪岩, 蒋金洋, 李荷, 等. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.

    CHU Hongyan, JIANG Jinyang, LI He, et al. Effects of eco-friendly fine aggregates on mechanical properties of ultra-high performance concrete[J]. Materials Reports, 2020, 34(24): 24029-24033.
    [2] 李玉根, 张慧梅, 刘光秀, 等. 风积砂混凝土基本力学性能及影响机理[J]. 建筑材料学报, 2020, 23(5): 1212-1221.

    LI Yugen, ZHANG Huimei, LIU Guangxiu, et al. Mechanical properties and influence mechanism of aeolian sand concrete[J]. Journal of Building Materials, 2020, 23(5): 1212-1221.
    [3] 李根峰, 申向东, 邹欲晓, 等. 基于微观特性分析风积沙粉体掺入提高混凝土的抗冻性[J]. 农业工程学报, 2018, 34(8): 109-116.

    LI Genfeng, SHEN Xiangdong, ZOU Yuxiao, et al. Improving frost resistance of concrete mixed with aeolian sand powder based on microscopic characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 109-116.
    [4] 王尧鸿, 楚奇, 韩青. 库布齐风积沙对各分级河砂的填充效应[J]. 建筑材料学报, 2021, 24(1): 191-198.

    WANG Yaohong, CHU Qi, HAN Qing. Filling effect of kubuqi aeolian sand on different classifications of river sand[J]. Journal of Building Materials, 2021, 24(1): 191-198.
    [5] 董伟, 肖阳, 苏英, 等. 风积沙混凝土轴心受压力学性能研究[J]. 工程科学与技术, 2020, 52(3): 86-92.

    DONG Wei, XIAO Yang, SU Ying, et al. Study on axial compression performance of aeolian sand concrete[J]. Advanced Engineering Sciences, 2020, 52(3): 86-92.
    [6] LI S H, JENSEN O M, WANG Z Z, et al. Influence of micromechanical property on the rate-dependent flexural strength of ultra-high performance concrete containing coarse aggregates (UHPC-CA)[J]. Composites Part B: Engineering, 2021, 227: 109394.1-109394.1.
    [7] ZHANG X Z, LIU Z C, WANG F Z. Autogenous shrinkage behavior of ultra-high performance concrete[J]. Construction and Building Materials, 2019, 226: 459-468. doi: 10.1016/j.conbuildmat.2019.07.177
    [8] KATKHUDA H, SHATARAT N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment[J]. Construction and Building Materials, 2017, 140: 328-335. doi: 10.1016/j.conbuildmat.2017.02.128
    [9] SUN X J, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete[J]. Construction and Building Materials, 2019, 202: 58-72. doi: 10.1016/j.conbuildmat.2019.01.018
    [10] WANG Y G, HUGHES P, NIU H C, et al. A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica[J]. Journal of Cleaner Production, 2019, 236: 117602.1-117602.12.
    [11] LI Y, ZHANG J P, HE Y Z, et al. A review on durability of basalt fiber reinforced concrete[J]. Composites Science and Technology, 2022, 225: 109519.1-109519.18.
    [12] JALASUTRAM S, SAHOO D R, MATSAGAR V. Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete[J]. Structural Concrete, 2017, 18(2): 292-302. doi: 10.1002/suco.201500216
    [13] 董伟, 林艳杰, 肖阳, 等. 玄武岩纤维增强风积沙混凝土的抗冲击性能[J]. 中国科技论文, 2019, 14(4): 447-451.

    DONG Wei, LIN Yanjie, XIAO Yang, et al. Impact resistance of basalt fiber reinforced aeolian sand concrete[J]. China Sciencepaper, 2019, 14(4): 447-451.
    [14] 雷雅楠. 玄武岩纤维风积沙混凝土力学性能及盐冻环境下耐久性试验研究[D]. 包头: 内蒙古科技大学, 2020.
    [15] BIAN H B, LIU Y Z, GUO Y D, et al. Investigating stress–strain relationship and damage constitutive model of basalt fiber reinforced concrete under uniaxial compression[J]. Journal of Building Engineering, 2023, 73: 106789.1-106789.18.
    [16] GUO Y, LIU Y, WANG W, et al. Effect of basalt fiber on uniaxial compression-related constitutive relation and compressive toughness of recycled aggregate concrete[J]. Materials, 2023, 16(5): 1849.1-1849.22.
    [17] JIANG J Y, FENG T T, CHU H Y, et al. Quasi-static and dynamic mechanical properties of eco-friendly ultra-high-performance concrete containing aeolian sand[J]. Cement and Concrete Composites, 2019, 97: 369-378. doi: 10.1016/j.cemconcomp.2019.01.011
    [18] YOO D Y, SHIN H O, YANG J M, et al. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers[J]. Composites Part B: Engineering, 2014, 58: 122-133. doi: 10.1016/j.compositesb.2013.10.081
    [19] LI Y, LIU Y Z, WANG R. Evaluation of the elastic modulus of concrete based on indentation test and multi-scale homogenization method[J]. Journal of Building Engineering, 2021, 43: 102758.1-102758.13.
    [20] ASTM. Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete: C1609/C1609M[S]. West Conshohocken: ASTM International, 2019.
    [21] 刘瀚卿, 白国良, 王建文, 等. 煤矸石混凝土单轴受压应力-应变曲线试验研究[J]. 建筑结构学报, 2023, 44(7): 236-245, 254.

    LIU Hanqing, BAI Guoliang, WANG Jianwen, et al. Experimental study on stress-strain curve of coal gangue concrete under uniaxial compression[J]. Journal of Building Structures, 2023, 44(7): 236-245, 254.
    [22] 钟光淳, 周颖, 肖意. 钢-聚乙烯醇混杂纤维混凝土单轴受力应力-应变曲线研究[J]. 工程力学, 2020, 37(增1): 111-120.

    ZHONG Guangchun, ZHOU Ying, XIAO Yi. Study on stress-strain curve of steel-polyvinyl alcohol hybrid fiber concrete under uniaxial loading[J]. Engineering Mechanics, 2020, 37(S1): 111-120.
    [23] CARREIRA D J, CHU K H. Stress-strain relationship for plain concrete in compression[J] ACI Jounral 1985, 82(6): 797-804.
    [24] 过镇海. 混凝土的强度和本构关系: 原理与应用[M]. 北京: 中国建筑工业出版社, 2004.
    [25] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2011[S]. 北京: 中国建筑工业出版社, 2015.
    [26] SHI X J, PARK P, REW Y, et al. Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension[J]. Construction and Building Materials, 2020, 233: 117316.1-117316.15.
    [27] NARAYANA R, DARWISH I Y S. Use of steel fibers as shear reinforcement[J]. Aci Struct Journal., 1987, 84(3): 216-227.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  29
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-05-28
  • 网络出版日期:  2025-10-15

目录

    /

    返回文章
    返回