• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

三轴车中、后桥液压互联悬架的减振特性

索雪峰 刘湘 杜腾 焦生杰 王刚锋

索雪峰, 刘湘, 杜腾, 焦生杰, 王刚锋. 三轴车中、后桥液压互联悬架的减振特性[J]. 西南交通大学学报, 2026, 61(1): 234-242. doi: 10.3969/j.issn.0258-2724.20240031
引用本文: 索雪峰, 刘湘, 杜腾, 焦生杰, 王刚锋. 三轴车中、后桥液压互联悬架的减振特性[J]. 西南交通大学学报, 2026, 61(1): 234-242. doi: 10.3969/j.issn.0258-2724.20240031
SUO Xuefeng, LIU Xiang, DU Teng, JIAO Shengjie, WANG Gangfeng. Vibration Reduction Characteristics of Hydraulically Interconnected Suspension on Middle and Rear Axles of Three-Axle Vehicle[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 234-242. doi: 10.3969/j.issn.0258-2724.20240031
Citation: SUO Xuefeng, LIU Xiang, DU Teng, JIAO Shengjie, WANG Gangfeng. Vibration Reduction Characteristics of Hydraulically Interconnected Suspension on Middle and Rear Axles of Three-Axle Vehicle[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 234-242. doi: 10.3969/j.issn.0258-2724.20240031

三轴车中、后桥液压互联悬架的减振特性

doi: 10.3969/j.issn.0258-2724.20240031
基金项目: 国家自然科学基金项目(12302110)
详细信息
    作者简介:

    索雪峰(1981—),男,博士研究生,研究方向为车辆振动与噪声控制、油气悬架减振性能研究与应用,E-mail:suoxuefeng@chd.edu.cn

  • 中图分类号: TH137

Vibration Reduction Characteristics of Hydraulically Interconnected Suspension on Middle and Rear Axles of Three-Axle Vehicle

  • 摘要:

    三轴矿用自卸车中、后桥为主要承重桥,其输出特性影响车辆的行驶稳定性. 为解决矿用自卸车的承载问题和提高车辆的行驶稳定性,提出一种液压互联悬架;采用阻抗传递矩阵法推导悬架的压力-流量关系式,得到1/2车辆机械-液压耦合方程;通过求解系统状态矩阵实现对车身-车轮运动模态的完全解耦,并开展路面障碍试验对悬架的工作特性进行研究. 分析结果表明:所提悬架系统能够降低车身垂跳运动的固有频率,增大阻尼比,使车身垂跳振动快速衰减,且改善了中、后轮的动载荷分配情况;当车辆以15 km/h速度驶越120 mm高的三角形障碍物时,其2个油气缸产生的最大压差达1.15 MPa,峰值响应出现在0.3 s内,有效实现负载均匀;2个油气缸位移量近似相等而方向互逆,很好地起到位移补偿作用,有助于维持行驶过程中的车身姿态.

     

  • 图 1  三轴车的1/2模型

    Figure 1.  1/2 model of a three-axle vehicle

    图 2  液压互联悬架模型

    Figure 2.  Model of hydraulically interconnected suspension

    图 3  J(s)三维图

    Figure 3.  Three-dimensional diagram of J(s)

    图 4  中、后车轮动载荷频响特性

    Figure 4.  Frequency response characteristics of dynamic load on the middle and rear wheels

    图 5  中、后轮输入工况下前轮动载荷频响特性

    Figure 5.  Frequency response characteristics of front wheel dynamic load under middle or rear wheel input conditions

    图 6  车辆通过120 mm高的路面障碍

    Figure 6.  Vehicle passing 120 mm high road obstacle

    图 7  传感器的布置

    Figure 7.  Layout of the sensors

    图 8  通过路面障碍时油气缸压力变化

    Figure 8.  Pressure variation of the oil cylinders when they pass the road obstacle

    图 9  液压互联悬架2个油气缸的压差

    Figure 9.  Pressure difference between two oil cylinders of hydraulically interconnected suspension

    图 10  通过路面障碍时油气缸位移变化

    Figure 10.  Displacement variation of the oil cylinders when they pass the road obstacle

    表  1  悬架系统参数

    Table  1.   Parameters of suspension system

    符号 数值 单位
    a, b, c 2.55, 0.75, 1.75 m
    ms 56000 kg
    Iyy 105000 kg·m2
    mu1, mu2, mu3 1050, 1550, 1550 kg
    ks1, ks2, ks3 1230, 1230, 1230 kN/m
    cs1, cs2, cs3 12.5, 10.0, 10.0 kN·s/m
    kt1, kt2, kt3 3015, 4200, 4200 kN/m
    下载: 导出CSV

    表  2  液压系统参数

    Table  2.   Parameters of hydraulic system

    符号 描述 取值
    ρ 油液密度/(kg·m−3 850
    Bm 油液体积模量/MPa 1700
    Pi 管道内径/m 0.022
    Pw 管壁厚度/m 0.01
    E 管道材料杨氏模量/MPa 206000
    Pd 活塞直径/m 0.22
    Pr 活塞杆直径/m 0.16
    Ap 蓄能器预充气压/MPa 5
    Av 蓄能器预充体积/m3 0.005
    ke 耦连悬架等效刚度/(N·m−1 1015000
    pe 系统平均压力/MPa 8.2
    下载: 导出CSV

    表  3  VCIS和VMR-HIS模态对比表

    Table  3.   Modal comparison of VCIS and VMR-HIS

    模态 VCIS VMR-HIS
    λ f/Hz ζ λ f/Hz ζ
    第一阶 −0.176 + 5.938i 0.945 0.030 −0.262-4.934i 0.786 0.053
    第二阶 −0.691 + 12.739i 2.030 0.054 −1.201-10.967i 1.756 0.109
    第三阶 −5.236 + 47.618i 7.624 0.109 −5.227-47.619i 7.624 0.109
    第四阶 −5.205 + 57.215i 9.144 0.091 −20.668-44.855i 7.860 0.419
    第五阶 −5.718 + 57.506i 9.197 0.099 −2.433-61.206i 9.750 0.040
    下载: 导出CSV

    表  4  试验设备清单

    Table  4.   List of test equipment

    名称 型号 数量
    三轴矿用自卸车 TLD110 1 辆
    多通道数据采集仪 DEWE-2600 1 台
    压力传感器 NS-P-I7 6 个
    位移传感器 NS-WY03 6 个
    下载: 导出CSV
  • [1] 寇发荣, 武大鹏, 许家楠, 等. 电磁混合主动悬架多模式协调切换控制[J]. 振动. 测试与诊断, 2023, 43(3): 467-475, 617-618.

    KOU Farong, WU Dapeng, XU Jianan, et al. Multi-mode coordinated switching control of electromagnetic hybrid active suspension[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(3): 467-475, 617-618.
    [2] 周庭荣, 王良模, 王陶, 等. 轻型客车悬架系统垂向动力学优化研究[J]. 振动与冲击, 2023, 42(14): 131-137, 188.

    ZHOU Tingrong, WANG Liangmo, WANG Tao, et al. Vertical dynamics optimization of a light bus suspension system[J]. Journal of Vibration and Shock, 2023, 42(14): 131-137, 188.
    [3] DING Fei, ZHANG Nong, HAN Xu. Dynamic characteristics of a tri-axle heavy truck fitted hydraulically anti-pith interconnected suspension[J]. Chinese Journal of Automotive Engineering, 2011, 1(4): 415-423.
    [4] 王玉龙, 张邦基, 郑敏毅. 装有抗侧翻液压互联悬架校车的动态特性分析[J]. 机械科学与技术, 2015, 34(4): 607-612.

    WANG Yulong, ZHANG Bangji, ZHENG Minyi. Dynamic analysis of school bus fitted with roll resistant specific hydraulically interconnected suspension system[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(4): 607-612.
    [5] SMITH M C, WALKER G W. Interconnected vehicle suspension[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219: 295-307.
    [6] ZHANG N, SMITH W A, JEYAKUMARAN J. Hydraulically interconnected vehicle suspension: background and modelling[J]. Vehicle System Dynamics, 2010, 48(1): 17-40. doi: 10.1080/00423110903243182
    [7] SMITH W A, ZHANG N, JEYAKUMARAN J. Hydraulically interconnected vehicle suspension: theoretical and experimental ride analysis[J]. Vehicle System Dynamics, 2010, 48(1): 41-64. doi: 10.1080/00423110903243190
    [8] QI H M, ZHANG N, CHEN Y C, et al. A comprehensive tune of coupled roll and lateral dynamics and parameter sensitivity study for a vehicle fitted with hydraulically interconnected suspension system[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(1): 143-161. doi: 10.1177/0954407020944287
    [9] WANG M, ZHANG B J, CHEN Y C, et al. Frequency-based modeling of a vehicle fitted with roll-plane hydraulically interconnected suspension for ride comfort and experimental validation[J]. IEEE Access, 2020, 8: 1091-1104. doi: 10.1109/ACCESS.2019.2935260
    [10] ZHANG J, DENG Y W, ZHANG N, et al. Vibration performance analysis of a mining vehicle with bounce and pitch tuned hydraulically interconnected suspension[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 195-211.
    [11] DING F, HAN X, LUO Z, et al. Modelling and characteristic analysis of tri-axle trucks with hydraulically interconnected suspensions[J]. Vehicle System Dynamics, 2012, 50(12): 1877-1904. doi: 10.1080/00423114.2012.699074
    [12] DING F, HAN X, MO X H, et al. Design of hydraulically interconnected suspension systems for tri-axle straight trucks with rear tandem axle bogie suspensions[J]. SAE International Journal of Commercial Vehicles, 2013, 6(1): 200-208. doi: 10.4271/2013-01-1237
    [13] DING F, ZHANG N, LIU J, et al. Dynamics analysis and design methodology of roll-resistant hydraulically interconnected suspensions for tri-axle straight trucks[J]. Journal of the Franklin Institute, 2016, 353(17): 4620-4651. doi: 10.1016/j.jfranklin.2016.08.016
    [14] 张邦基, 易金花, 张农, 等. 装有动力调节悬架系统车辆的频域建模与仿真[J]. 湖南大学学报(自然科学版), 2016, 43(10): 8-15.

    ZHANG Bangji, YI Jinhua, ZHANG Nong, et al. Frequency-domain modelling and simulation of a vehicle fitted with kinetic dynamic suspension system[J]. Journal of Hunan University (Natural Sciences), 2016, 43(10): 8-15.
    [15] 吴晓建, 周兵, 文桂林. 考虑作动器动力学的半车主动互联悬架抗侧倾控制研究[J]. 振动与冲击, 2017, 36(12): 150-154.

    WU Xiaojian, ZHOU Bing, WEN Guilin. A study on anti-roll control of half-car model active interconnected suspension with consideration of actuator dynamics[J]. Journal of Vibration and Shock, 2017, 36(12): 150-154.
    [16] 刘启航, 冯汉队, 刘申, 等. 基于AMESim的矿用自卸车悬架系统平顺性分析[J]. 西南交通大学学报, 2025, 60(2): 395-402.

    LIU Qihang, FENG Handui, LIU Shen, et al. Ride comfort analysis of suspension system of mining dump truck based on AMESim[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 395-402.
    [17] 任杰, 刘洋佐, 马大为. 发射车多轴连通式油气悬架的连通耦合效应[J]. 国防科技大学学报, 2023, 45(4): 153-161.

    REN Jie, LIU Yangzuo, MA Dawei. Coupling effects of multi-axles interconnected hydropneumatic suspension of launch vehicle[J]. Journal of National University of Defense Technology, 2023, 45(4): 153-161.
    [18] 刘秀梅, 李永涛. 车辆油气悬架技术研究综述[J]. 西南交通大学学报, 2025, 60(2): 374-394.

    LIU Xiumei, LI Yongtao. Review of research on vehicle hydro-pneumatic suspension technology[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 374-394.
    [19] 刘启航, 冯汉队, 刘申, 等. 基于AMESim的矿用自卸车悬架系统平顺性分析[J]. 西南交通大学学报, 2025, 60(2): 395-402.

    LIU Qihang, FENG Handui, LIU Shen, et al. Ride comfort analysis of suspension system of mining dump truck based on amesim[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 395-402.
    [20] DAI L , LIU Y , WANG L , et al. Study on the stiffness and damping characteristics of a single-chamber hydro-pneumatic suspension without hydro-pneumatic separation[J]. Journal of Physics: Conference Series, 2025, 2951(1): 012049.
    [21] YANG F, DU Y F, WEN C K, et al. Optimization design of the hydro-pneumatic suspension system for high clearance self-propelled sprayer using improved MOPSO algorithm[J]. International Journal of Agricultural and Biological Engineering , 2024, 17(2): 109-122.
    [22] WANG G F, WANG W T, SUO X F, et al. Multi-objective parameter optimization of a novel hydraulically interconnected suspension for tri-axle mining dump trucks[J]. Journal of Vibration and Control, 2024, 31(17/18): 3585-3598.
    [23] LI Z L, HOU H T, ZHANG Z, et al. Analysis of vehicle ride comfort and parameter optimization of hydro-pneumatic suspension for heavy duty mining vehicle[J]. Engineering Letters, 2024, 32(11): 2145-2152.
    [24] SUN A X, YU C C, XIE F W, et al. Ride comfort improvement by back propagation-active disturbance rejection control in semi-active hydro-pneumatic suspension of mining dump truck[J]. Journal of Vibration and Control, 2025, 35(11-12): 2378-2394.
    [25] 王刚锋, 王万汀, 索雪峰, 等. 矿用自卸车液压互联悬架参数灵敏度分析与优化[J]. 振动与冲击, 2024, 43(19): 232-241.

    WANG Gangfeng, WANG Wanting, SUO Xuefeng, et al. Sensitivity analysis and optimization of hydraulically interconnected suspensionparameters of mining dump trucks[J]. Journal of Vibration and Shock, 2024, 43(19): 232-241.
    [26] 曹鸿立, 郭勇, 李洪周. 带有液压互联悬架的履带车行驶平顺性研究[J]. 振动与冲击, 2025, 44(17): 272-280.

    CAO Hongli, GUO Yong, LI Hongzhou. Ride comfort of tracked vehicles with hydraulic interconnected suspension[J]. Journal of Vibration and Shock, 2025, 44(17): 272-280.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  29
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-04-24
  • 网络出版日期:  2025-11-13
  • 刊出日期:  2024-05-10

目录

    /

    返回文章
    返回