Synergistic Development Model of China Railway Express Under Government Reward-Penalty Mechanism
-
摘要:
为减少中欧班列运营商竞相低价揽货、抢夺货源现象的发生,基于地方政府对中欧班列运营商和中欧班列供货商的补贴,并结合中欧班列运营过程中实际情况,构建政府奖惩机制下的“政府-运营商-供货商”非对称性三方演化博弈模型;在此基础上,通过数值仿真分析政府补贴、惩罚等主要因素对系统演化稳定策略的影响,并据此为中欧班列协同发展提供理论参考. 研究结果表明:政府增大惩罚力度将有效推动运营商和供货商的协同发展;根据运营商和供货商的不同策略实行差额补贴,不同补贴力度之间的差值越大越有益于协同;合理设置政府提供给运营商的单位集装箱最大补贴额,并视情况逐渐减小额度直至补贴完全退出,是促进协同的有效途径;政府的额外社会效益是决定政府策略选择的正向影响因素.
Abstract:To reduce the phenomenon in which China-Europe Railway Express operators compete for cargo sources by offering excessively low prices, an asymmetric tripartite evolutionary game model of “government-operator-supplier” was constructed under the reward-and-punishment mechanism of the government. The model was based on local government subsidies to China Railway Express operators and suppliers and took into account the actual conditions in the operation process of China Railway Express. Through numerical simulation, the influence of the main factors, including the reward and punishment of the government, on the evolutionary stability strategy of the system was analyzed, providing theoretical references for the coordinated development of the China Railway Express accordingly. The results have shown that the increased government punishment will effectively promote synergistic development between operators and suppliers. Differential subsidies are given according to the different strategies of operators and suppliers. As the difference between different subsidy levels becomes larger, it is more beneficial for synergistic development. Reasonable setting of the maximum subsidy per unit of container provided by the government to operators, and gradually reducing the amount until the subsidy is completely withdrawn, is an effective way to promote synergistic development. The additional social benefits of the government are a positive influence in determining the choice of government strategies.
-
表 1 模型符号及其含义
Table 1. Model symbols and their meanings
符号 定义 符号 定义 $ {{R}}_{{1}} $ 政府积极监管带来的社会效益 $ {\alpha } $ 政府积极监管下,对积极协同运营商的补贴力度,$ {\alpha } $∈[0,1] $ {{R}}_{{2}} $ 政府消极监管带来的社会效益 $ {\beta } $ 政府消极监管下,对运营商的补贴力度,$ {\beta } $∈[0,1] $ {C} $ 政府积极监管机构监管的成本 $ {\gamma } $ 政府积极监管下,对消极协同运营商的补贴力度,$ {\gamma } $∈[0,1] $ {U} $ 政府积极监管下运营商和供货商协同发展为政府带来的额外社会效益 $ {{c}}_{{1}} $ 单位集装箱操作成本,包括集装箱装卸、搬运等成本 $ {{P}}_{{1}} $ 中铁集团向班列运营商提供的单位运力价格 $ {{c}}_{{2}} $ 单位集装箱货物价值 $ {{P}}_{{2}} $ 政府积极监管下,运营商积极协同时向供货商提供的单位集装箱运价 $ {{c}}_{{3}} $ 供货商的其他成本 $ {{P}}_{{3}} $ 政府积极监管下,运营商消极协同时向供货商提供的单位集装箱运价 $ {{Q}}_{{1}} $ 积极协同总集装箱数量 $ {{P}}_{{4}} $ 政府消极监管下,运营商积极协同时向供货商提供的单位集装箱运价 $ {{Q}}_{{2}} $ 消极协同总集装箱数量 $ {{P}}_{{5}} $ 政府消极监管下,运营商消极协同时向供货商提供的单位集装箱运价 $ {{r}}_{{1}} $ 政府积极监管运营商积极协同带来风险的风险水平系数 $ {{P}}_{{6}} $ 单位集装箱货物销售价格 $ {{r}}_{{2}} $ 政府消极监管运营商积极协同带来风险的风险水平系数 $ {{C}}_{{{\mathrm{P1}}}} $ 政府积极监管运营商选择积极协同需要付出的集货运费成本 $ {I} $ 协同收益 $ {{C}}_{{{\mathrm{P2}}}} $ 政府消极监管运营商选择积极协同需要付出的集货运费成本 $ {\sigma } $ 运营商和供货商对协同收益的分配比例,$ {\sigma } $∈ [0,1] $ {{C}}_{{{\mathrm{t1}}}} $ 政府积极监管供货商选择与积极协同运营商合作需要付出的集货时间成本 $ {{F}}_{{1}} $ 政府监管下,对消极协同运营商的罚金 $ {{C}}_{{{\mathrm{t2}}}} $ 政府消极监管供货商选择与积极协同运营商合作需要付出的集货时间成本 $ {{F}}_{{2}} $ 政府监管下,对与消极协同运营商合作的供货商、不与积极协同运营商合作的供货商的罚金 $ {M} $ 政府提供给运营商的单位集装箱最大补贴额 表 2 收益矩阵
Table 2. Revenue matrix
策略 收益对象 运营商积极协同 y 运营商消极协同 1−y 供货商合作 z 供货商不合作 1−z 供货商合作 z 供货商不合作 1−z 政府积极监管 x 政府
运营商
供货商$\begin{gathered} {\varPi _{{\rm{G1}}} } - \alpha M{Q_1} + U \\ {\varPi _{{\rm{O1}}} } + \alpha M{Q_1} + \sigma I \\ {\varPi _{{\rm{S1}}} } + (1 - \sigma )I \\ \end{gathered}$ $\begin{gathered} {\varPi _{{\rm{G1}}} } \\ {\varPi _{{\rm{O2}}} } + {F_2} \\ - {F_2} \\ \end{gathered}$ $\begin{gathered} {\varPi _{{\rm{G1}}} } - \gamma M{Q_2} + {F_1} + {F_2} \\ {\varPi _{{\rm{O3}}} } + \gamma M{Q_2} - {F_1} \\ {\varPi _{{\rm{S2}}} } - {F_2} \\ \end{gathered}$ $\begin{gathered} {\varPi _{{\rm{G1}}} } \\ - {F_1} \\ {F_1} \\ \end{gathered}$ 政府消极监管 1−x 政府
运营商
供货商$\begin{gathered} {\varPi _{{\rm{G2}}} } - \beta M{Q_1} \\ {\varPi _{{\rm{O4}}} } + \beta M{Q_1} + \sigma I \\ {\varPi _{{\rm{S3}}} } + (1 - \sigma )I \\ \end{gathered}$ $\begin{gathered} {\varPi _{{\rm{G2}}} } \\ {\varPi _{{\rm{O5}}} } \\ 0 \\ \end{gathered}$ $\begin{gathered} {\varPi _{{\rm{G2}}} } - \beta M{Q_2} \\ {\varPi _{{\rm{O6}}} } + \beta M{Q_2} \\ {\varPi _{{\rm{S4}}} } \\ \end{gathered}$ $\begin{gathered} {\varPi _{{\rm{G2}}} } \\ 0 \\ 0 \\ \end{gathered}$ 表 3 均衡点特征值
Table 3. Equilibrium point eigenvalues
均衡点 特征值 $ {\lambda }_{1} $ 特征值 $ {\lambda }_{2} $ 特征值 $ {\lambda }_{3} $ $ {E}_{1}\left(\mathrm{0,0},0\right) $ ${\varPi _{{\rm{G1}}} } - {\varPi _{{\rm{G2}}} }$ ${\varPi _{{\rm{O5}}} } < 0$ ${\varPi _{{\rm{S4}}} } > 0$ $ {E}_{2}\left(\mathrm{1,0},0\right) $ $- ({\varPi _{{\rm{G1}}} } - {\varPi _{{\rm{G2}}} })$ ${\varPi _{{\rm{O2}}} } + {F_1} + {F_2}$ ${\varPi _{{\rm{S2}}} } - {F_1} - {F_2}$ $ {E}_{3}\left(\mathrm{0,1},0\right) $ ${\varPi _{{\rm{G1}}} } - {\varPi _{{\rm{G2}}} }$ $- {\varPi _{{\rm{O5}}} } > 0$ ${\varPi _{{\rm{S3}}} } + (1 - \sigma )I > 0$ $ {E}_{4}\left(\mathrm{0,0},1\right) $ ${\varPi _{{\rm{G1}}} } - {\varPi _{{\rm{G2}}} } + {F_1} + {F_2} + \beta M{Q_2} - \gamma M{Q_2}$ ${\varPi _{{\rm{O4}}} } - {\varPi _{{\rm{O6}}} } + \beta M{Q_1} - \beta M{Q_2} + \sigma I$ $- {\varPi _{{\rm{S4}}} } < 0$ $ {E}_{5}\left(\mathrm{0,1},1\right) $ ${\varPi _{{\rm{G1}}} } - {\varPi _{{\rm{G2}}} } + U - \alpha M{Q_1} + \beta M{Q_1}$ $- ({\varPi _{{\rm{O4}}} } - {\varPi _{{\rm{O6}}} } + \beta M{Q_1} - \beta M{Q_2} + \sigma I)$ $- [{\varPi _{{\rm{S3}}} } + (1 - \sigma )I] < 0$ $ {E}_{6}\left(\mathrm{1,0},1\right) $ $- ({\varPi _{{\rm{G1}}} } - {\varPi _{{\rm{G2}}} } + {F_1} + {F_2} + \beta M{Q_2} - \gamma M{Q_2})$ ${\varPi _{{\rm{O1}}} } - {\varPi _{{\rm{O3}}} } + \alpha M{Q_1} - \gamma M{Q_2} + \sigma I + {F_1}$ $- ({\varPi _{{\rm{S2}}} } - {F_1} - {F_2})$ $ {E}_{7}\left(\mathrm{1,1},0\right) $ $- ({\varPi _{{\rm{G1}}} } - {\varPi _{{\rm{G2}}} })$ $- ({\varPi _{{\rm{O2}}} } + {F_1} + {F_2})$ ${\varPi _{{\rm{S1}}} } + (1 - \sigma )I + {F_2} > 0$ $ {E}_{8}\left(\mathrm{1,1},1\right) $ $- ({\varPi _{{\rm{G1}}} } - {\varPi _{{\rm{G2}}} } + U - \alpha M{Q_1} + \beta M{Q_1})$ $- ({\varPi _{{\rm{O1}}} } - {\varPi _{{\rm{O3}}} } + \alpha M{Q_1} - \gamma M{Q_2} + \sigma I + {F_1})$ $- [{\varPi _{{\rm{S1}}} } + (1 - \sigma )I + {F_2}] < 0$ 表 4 参数初始赋值
Table 4. Initial assignment of parameters
参数 初始值 单位 参数 初始值 单位 $ {R_1} $ 100 百万元 $ {C_{{\mathrm{t2}}}} $ 5 万元 $ {R_2} $ 50 百万元 $ \alpha $ 0.5 $ C $ 10 百万元 $ \beta $ 0.45 $ U $ 40 百万元 $ \gamma $ 0.4 $ M $ 3 万元 $ {c_1} $ 2 万元 $ {P_1} $ 10 万元 $ {c_2} $ 1 万元 $ {P_2} $ 15 万元 $ {c_3} $ 1 万元 $ {P_3} $ 13 万元 $ {Q_1} $ 1 百个 $ {P_4} $ 14 万元 $ {Q_2} $ 2 百个 $ {P_5} $ 12 万元 $ {r_1} $ 0.2 $ {P_6} $ 16 万元 $ {r_2} $ 0.3 $ I $ 1 万元 $ \sigma $ 0.5 $ {C_{{\mathrm{P1}}}} $ 5 万元 $ {F_1} $ 8.5 万元 $ {C_{{\mathrm{P2}}}} $ 6 万元 $ {F_2} $ 10 万元 $ {C_{{\mathrm{t1}}}} $ 4 万元 -
[1] LEE H L, SHEN Z. Supply chain and logistics innovations with the belt and road initiative[J]. Journal of Management Science and Engineering, 2020, 5(2): 77-86. doi: 10.1016/j.jmse.2020.05.001 [2] 中国国家铁路集团有限公司. 光明日报: 上半年中欧班列开行创新高[NB/OL]. (2023-07-08)[2024-01-03]. http://www.china-railway.com.cn/xwzx/mtjj/gmrb/gmrb/202307/t20230708_128887.html. [3] 许英明. 高质量发展背景下中欧班列发展现状、挑战与对策[J]. 国际贸易, 2020(5): 28-34.XU Yingming. Development status, challenges and suggestions of CR express in the context of high-quality development[J]. Intertrade, 2020(5): 28-34. [4] 汪和平, 严啸宸, 赵丹, 等. 政府奖惩机制下考虑消费者低碳偏好的汽车制造商生产决策研究[J]. 系统工程理论与实践, 2023, 43(9): 2669-2684.WANG Heping, YAN Xiaochen, ZHAO Dan, et al. Research on production-decision of automakers considering consumer’s low-carbon preference under the government reward-penalty mechanism[J]. Systems Engineering-Theory & Practice, 2023, 43(9): 2669-2684. [5] 周晓阳, 赵凡, 刘莹, 等. 政府补贴和成本共担如何影响平台和企业策略选择——基于三方演化博弈[J]. 控制与决策, 2022, 37(2): 293-302.ZHOU Xiaoyang, ZHAO Fan, LIU Ying, et al. How do government subsidies and cost sharing affect platform and enterprise strategy choice: based on tripartite evolutionary game[J]. Control and Decision, 2022, 37(2): 293-302. [6] 朱立龙, 荣俊美, 张思意. 政府奖惩机制下药品安全质量监管三方演化博弈及仿真分析[J]. 中国管理科学, 2021, 29(11): 55-67.ZHU Lilong, RONG Junmei, ZHANG Siyi. Three-party evolutionary game and simulation analysis of drug quality supervision under the government reward and punishment mechanism[J]. Chinese Journal of Management Science, 2021, 29(11): 55-67. [7] 周泽辉, 张桂涛, 尹晓娜. 低碳背景下政府、企业与低碳服务提供商的演化博弈[J]. 运筹与管理, 2023, 32(4): 35-40.ZHOU Zehui, ZHANG Guitao, YIN Xiaona. Evolution game analysis among government, enterprises and low carbon service providers under low carbon background[J]. Operations Research and Management Science, 2023, 32(4): 35-40. [8] 周晓阳, 李长长, 刘莹, 等. 工业互联网平台、开发商与企业的三方协作演化策略: 兼论政府补贴和收益共享的作用[J]. 中国管理科学, 2024, 32(1): 276-287.ZHOU Xiaoyang, LI Changchang, LIU Ying, et al. Tripartite cooperation evolutionary strategy of industrial internet platform, developer and enterprise: the role of government subsidies and revenue sharing[J]. Chinese Journal of Management Science, 2024, 32(1): 276-287. [9] 李玉民, 王博, 潘晓景. “一带一路” 倡议下中欧班列补贴退坡策略设计[J]. 西安财经大学学报, 2022, 35(3): 109-120.LI Yumin, WANG Bo, PAN Xiaojing. Design of CR express’s subsidy slope strategy under the background of “one belt and one road”[J]. Journal of Xi’an University of Finance and Economics, 2022, 35(3): 109-120. [10] 冯芬玲, 刘洋. 考虑货物时间价值的中欧班列差异化补贴经济性分析[J]. 铁道运输与经济, 2022, 44(6): 1-7.FENG Fenling, LIU Yang. Economic analysis of differentiated subsidy for China—Europe railway express considering freight time value[J]. Railway Transport and Economy, 2022, 44(6): 1-7. [11] 张海华, 唐东海. 考虑货物时间价值的中欧班列公司价格竞争研究[J]. 经济研究导刊, 2022(11): 87-90, 94.ZHANG Haihua, TANG Donghai. Research on price competition of China—Europe train company considering time value of goods[J]. Economic Research Guide, 2022(11): 87-90, 94. [12] 李玉民, 潘晓景, 王博, 等. 基于改进Hotelling模型的中欧班列运营商竞合关系研究[J]. 铁道科学与工程学报, 2021, 18(4): 1035-1042.LI Yumin, PAN Xiaojing, WANG Bo, et al. Research on the co-opetition of the China—Europe raiway express operator based on the extended Hotelling model[J]. Journal of Railway Science and Engineering, 2021, 18(4): 1035-1042. [13] 樊芝菱. 考虑服务质量的中欧班列运营博弈策略研究[D]. 成都: 西南交通大学, 2021. [14] SHI Q Q, ZHU J B, LI Q. Cooperative evolutionary game and applications in construction supplier tendency[J]. Complexity, 2018, 2018(1): 8401813. doi: 10.1155/2018/8401813 [15] KONG X D, XU Q, ZHU T. Dynamic evolution of knowledge sharing behavior among enterprises in the cluster innovation network based on evolutionary game theory[J]. Sustainability, 2020, 12(1): 75. [16] WANG W K, YOU X Q, LIU K B, et al. Implementation of a multi-agent carbon emission reduction strategy under the Chinese dual governance system: an evolutionary game theoretical approach[J]. International Journal of Environmental Research and Public Health, 2020, 17(22): 8463. doi: 10.3390/ijerph17228463 [17] LIU W W, YANG J N. The evolutionary game theoretic analysis for sustainable cooperation relationship of collaborative innovation network in strategic emerging industries[J]. Sustainability, 2018, 10(12): 4585. doi: 10.3390/su10124585 [18] 龚燕秋. 基于演化博弈的中欧班列开行城市协同运营研究[D]. 重庆: 重庆工商大学, 2021. [19] 赵鸣, 徐洪绕. “一带一路” 节点城市中欧班列运行均衡化问题前瞻研究[J]. 大陆桥视野, 2017(8): 46-51.ZHAO Ming, XU Hongrao. A prospective study on the balanced operation of trains between China and Europe in the “Belt and Road” node cities[J]. New Silk Road Horizon, 2017(8): 46-51. [20] 许英明, 邢李志, 董现垒. “一带一路” 倡议下中欧班列贸易通道研究[J]. 国际贸易, 2019(2): 80-86.XU Yingming, XING Lizhi, DONG Xianlei. Research on the trade routes of China railway express under the Belt and Road Initiative[J]. Intertrade, 2019(2): 80-86. [21] 赵鲁华, 邢惠尧, 武光娜, 等. 基于Hotelling模型的中欧班列运营商竞合策略演化博弈研究[J]. 铁道科学与工程学报, 2024, 21(11): 4456-4466.ZHAO Luhua, XING Huiyao, WU Guangna , et al. Evolutionary game study on the competition-cooperation strategy of China—Europe railway express operators based on the hotelling model[J]. Journal of Railway Science and Engineering, 2024, 21(11): 4456-4466. [22] 戴朝华, 杨帅, 叶圣永, 等. 供需双方博弈视角下的V2G优化策略[J]. 西南交通大学学报, 2025, 60(1): 166-174, 193.DAI Chaohua, YANG Shuai, YE Shengyong, et al. Vehicle to grid optimization strategy from the perspective of supply and demand game[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 166-174, 193. [23] 杨达, 冯婷薇, 钟家月, 等. 车路协同下交叉口前的无人车群体车道选择[J]. 西南交通大学学报, 2025, 60(5): 1250-1258, 1314.YANG Da, FENG Tingwei, ZHONG Jiayue, et al. Lane selection of automated vehicle groups approaching intersections based on vehicle–infrastructure cooperation[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1250-1258, 1314. [24] 张军, 朱璐, 苟焰, 等. 中欧班列市场化运营决策的三方演化博弈分析[J]. 管理工程学报, 2023, 37(2): 197-208.ZHANG Jun, ZHU Lu, GOU Yan, et al. A tripartite evolutionary game analysis of the market-oriented operation decision of China-Europe railway express[J]. Journal of Industrial Engineering and Engineering Management, 2023, 37(2): 197-208. [25] 铁道部国际合作司. 国际铁路货物联运统一过境运价规程(统一货价)[M]. 北京: 中国铁道出版社, 2012. -
下载: