• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

浮充工况锂电池组早期内短路快速定量诊断方法

李志强 刘媛 李彬 时玮 郑岳久 来鑫

李志强, 刘媛, 李彬, 时玮, 郑岳久, 来鑫. 浮充工况锂电池组早期内短路快速定量诊断方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230704
引用本文: 李志强, 刘媛, 李彬, 时玮, 郑岳久, 来鑫. 浮充工况锂电池组早期内短路快速定量诊断方法[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230704
LI Zhiqiang, LIU Yuan, LI Bin, SHI Wei, ZHENG Yuejiu, LAI Xin. Fast Quantitative Diagnosis Method for Early-Stage Internal Short Circuit in Lithium Battery Pack under Floating Charge Conditions[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230704
Citation: LI Zhiqiang, LIU Yuan, LI Bin, SHI Wei, ZHENG Yuejiu, LAI Xin. Fast Quantitative Diagnosis Method for Early-Stage Internal Short Circuit in Lithium Battery Pack under Floating Charge Conditions[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230704

浮充工况锂电池组早期内短路快速定量诊断方法

doi: 10.3969/j.issn.0258-2724.20230704
基金项目: 国家自然科学基金项目(52277223, 51977131)
详细信息
    作者简介:

    李志强,男,高级工程师,研究方向为新型电力系统,E-mail:12088801@chnenergy.com.cn

  • 中图分类号: xxx

Fast Quantitative Diagnosis Method for Early-Stage Internal Short Circuit in Lithium Battery Pack under Floating Charge Conditions

  • 摘要:

    锂离子电池的浮充工况广泛存在于备用电源、通讯基站等场景,是一种状态趋于稳定的特殊工况;然而,这种稳定性却对该工况下电池内短路定量诊断带来挑战. 本文提出一种基于间歇式充电的锂离子电池组早期内短路定量诊断方法,该方法利用重复的“充电-断电”过程,根据充电电量与漏电量的关系计算出等效漏电流,实现内短路的快速定量诊断. 仿真与实验结果表明:对于500 Ω级别的电池微短路,所提出方法的诊断误差小于2%,检测时间约为33 min,实现对浮充电工况下电池内短路的早期高精度定量诊断;在诊断100 Ω级别中,所提出方法相较于常规恒压源方法内短路的精度提高超16倍以上,且计算负担非常低,对提高电池组安全性具有重要意义.

     

  • 图 1  浮充电池系统的基本结构

    Figure 1.  Basic structure of battery system with floating charge

    图 2  基于间歇式充电的内短路检测原理

    Figure 2.  Principle of ISC detection based on intermittent charging

    图 3  内短路检测算法框架

    Figure 3.  ISC detection algorithm framework

    图 4  电池组间歇式充电仿真模型

    Figure 4.  Intermittent charging simulation model for battery pack

    图 5  电池组仿真结果 (100 Ω内短路电阻)

    Figure 5.  Battery pack simulation results (100 Ω ISC resistance)

    图 6  实验设备

    Figure 6.  Experimental equipment

    图 7  内短路实验结果

    Figure 7.  Experimental results of ISC

    图 8  不同阻值下ISC实验结果

    Figure 8.  Experimental results of ISC under different resistance values

    图 9  恒压源法检测电池内短路

    Figure 9.  Constant voltage source method for detecting ISC in battery

    表  1  不同内短路程度下漏电流与内短路阻值估计结果

    Table  1.   Estimation results of leakage current and ISC resistance under different degrees of ISC

    外接阻值/Ω I1/mA I2/mA I3/mA Ileak/mA 阻值估计
    结果/Ω
    误差/%
    55 60.3 60.3 62.5 61.0 57.1 3.86
    100 34.6 34.2 33.5 34.1 102.1 2.10
    200 17.3 16.4 17.4 17.0 204.5 2.24
    300 11.3 11.6 11.5 11.5 303.8 1.28
    500 7.0 7.3 7.0 7.1 491.0 1.79
    下载: 导出CSV

    表  2  内短路阻值与诊断时间之间的关系

    Table  2.   Relationship between ISC resistance and diagnostic time

    外接阻
    值/Ω
    t1/s t2/s 最小检测
    时间/s
    占空比
    55 32.2 225.5 257.7 0.137
    100 30.2 408.4 438.6 0.075
    200 29.3 811.2 833.2 0.036
    300 28.3 1203.4 1231.7 0.023
    500 28.8 1950.3 1979.1 0.014
    下载: 导出CSV

    表  3  恒压源法诊断电池内短路结果

    Table  3.   Results of ISC diagnosis in battery by constant voltage source method

    短路阻值/Ω 电流滤波结果 漏电流/A 阻值诊断
    结果/Ω
    诊断误
    差/%
    I1/A I2/A
    10 1.58759 1.89699 0.30940 11.150 11.5
    20 1.58337 1.74219 0.15882 21.720 8.6
    50 1.58456 1.66968 0.08512 40.531 18.9
    100 1.58577 1.63719 0.05142 67.095 32.9
    下载: 导出CSV
  • [1] 邹大中, 陈浩舟, 李勋, 等. 基于云端充电数据的锂电池组一致性评价方法[J]. 电网技术, 2022, 46(3): 1049-1064.

    ZOU Dazhong, CHEN Haozhou, LI Xun, et al. Cell-to-cell variation evaluation for lithium-ion battery packs in electric vehicles with cloud charging data[J]. Power System Technology, 2022, 46(3): 1049-1064.
    [2] 来鑫, 李云飞, 郑岳久, 等. 基于SOC-OCV优化曲线与EKF的锂离子电池荷电状态全局估计[J]. 汽车工程, 2021, 43(1): 19-26.

    LAI Xin, LI Yunfei, ZHENG Yuejiu, et al. An overall estimation of state-of-charge based on SOC-OCV optimization curve and EKF for lithium-ion battery[J]. Automotive Engineering, 2021, 43(1): 19-26.
    [3] LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse[J]. Energy, 2023, 263: 126027. doi: 10.1016/j.energy.2022.126027
    [4] 张健豪, 高兴奇, 张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198, 230.

    ZHANG Jianhao, GAO Xingqi, ZHANG Li. Micro short circuit diagnosis method of battery pack based on capacity increment curve and charge capacity difference[J]. Automotive Engineering, 2023, 45(2): 191-198,230.
    [5] 熊瑞, 孙万洲, 杨瑞鑫, 等. 储能电池外部短路的损伤与失效边界及其预测[J]. 机械工程学报, 2023, 59(4): 113-124. doi: 10.3901/JME.2023.04.113

    XIONG Rui, SUN Wanzhou, YANG Ruixin, et al. Damage and failure boundaries and prediction of external short circuit in lithium-ion battery[J]. Journal of Mechanical Engineering, 2023, 59(4): 113-124. doi: 10.3901/JME.2023.04.113
    [6] LAI X, JIN C Y, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: recent advances and perspectives[J]. Energy Storage Materials, 2021, 35: 470-499. doi: 10.1016/j.ensm.2020.11.026
    [7] DUAN X D, LI J N, JIA Y K, et al. Understanding of stress-driven internal short circuit mechanisms in lithium-ion batteries with high SOCs[J]. Advanced Science, 2023, 10(29): 2302496. doi: 10.1002/advs.202302496
    [8] WANG L B, LI J P, CHEN J Y, et al. Revealing the internal short circuit mechanisms in lithium-ion batteries upon dynamic loading based on multiphysics simulation[J]. Applied Energy, 2023, 351: 121790. doi: 10.1016/j.apenergy.2023.121790
    [9] 余抒阳, 罗文雷, 解晶莹, 等. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.

    YU Shuyang, LUO Wenlei, XIE Jingying, et al. Review on mechanism and model of heat release and safety modification technology of lithium-ion batteries[J]. Progress in Chemistry, 2023, 35(4): 620-642.
    [10] FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, 2018, 10: 246-267. doi: 10.1016/j.ensm.2017.05.013
    [11] 陈素华, 白莹. 锂离子动力电池热失控机理及热管理技术研究进展[J]. 中国科学基金, 2023, 37(2): 187-198.

    CHEN Suhua, BAI Ying. Thermal runway mechanism and research progress on thermal management of lithium-ion power batteries[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(2): 187-198.
    [12] QIAO D D, WANG X Y, LAI X, et al. Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method[J]. Energy, 2022, 243: 123082. doi: 10.1016/j.energy.2021.123082
    [13] FENG X N, WENG C H, OUYANG M G, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161: 168-180. doi: 10.1016/j.apenergy.2015.10.019
    [14] WANG H, NIE J H, HE Z W, et al. A reconstruction-based model with transformer and long short-term memory for internal short circuit detection in battery packs[J]. Energy Reports, 2023, 9: 2420-2430. doi: 10.1016/j.egyr.2023.01.092
    [15] MA R F, DENG Y L, WANG X X. Simplified electrochemical model assisted detection of the early-stage internal short circuit through battery aging[J]. Journal of Energy Storage, 2023, 66: 107478. doi: 10.1016/j.est.2023.107478
    [16] YUAN H T, CUI N X, LI C L, et al. Early stage internal short circuit fault diagnosis for lithium-ion batteries based on local-outlier detection[J]. Journal of Energy Storage, 2023, 57: 106196. doi: 10.1016/j.est.2022.106196
    [17] QIAO D D, WEI X Z, FAN W J, et al. Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles[J]. Applied Energy, 2022, 317: 119168. doi: 10.1016/j.apenergy.2022.119168
    [18] KONG X D, ZHENG Y J, OUYANG M G, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395: 358-368. doi: 10.1016/j.jpowsour.2018.05.097
    [19] WU Q, YANG L, LI N, et al. In-situ thermography revealing the evolution of internal short circuit of lithium-ion batteries[J]. Journal of Power Sources, 2022, 540: 231602. doi: 10.1016/j.jpowsour.2022.231602
    [20] SAZHIN S V, DUFEK E J, GERING K L. Enhancing Li-ion battery safety by early detection of nascent internal shorts[J]. Journal of The Electrochemical Society, 2016, 164(1): 6281-6287.
    [21] JIA Y K, XU J. Data-driven short circuit resistance estimation in battery safety issues[J]. Journal of Energy Chemistry, 2023, 79: 37-44. doi: 10.1016/j.jechem.2022.12.035
    [22] CHANG C K. Factors affecting capacity design of lithium-ion stationary batteries[J]. Batteries, 2019, 5(3): 58-71. doi: 10.3390/batteries5030058
    [23] MATSUSHIMA T. Deterioration estimation of lithium-ion cells in direct current power supply systems and characteristics of 400-Ah lithium-ion cells[J]. Journal of Power Sources, 2009, 189(1): 847-854. doi: 10.1016/j.jpowsour.2008.08.023
    [24] 尹涛. 浮充工况下储能锂离子电池性能研究[D]. 青岛: 青岛大学, 2022.
    [25] 李晓枫, 常益, 杨章, 等. 应用阻抗谱的锂电池模组早期内短路故障诊断[J]. 西安交通大学学报, 2024, 58(11): 1-13.
    [26] 徐俊, 郭喆晨, 谢延敏, 等. 储能锂电池系统综合管理研究进展[J]. 西安交通大学学报, 2024, 58(10): 1-23. doi: 10.7652/xjtuxb202410001.
    [27] 万广伟, 张强. 锂离子电池SOC评估方法研究进展[J]. 电源技术, 2023, 47(9): 1122-1125.

    WAN Guangwei, ZHANG Qiang. Research progress of SOC evaluation methods for lithium ion batteries[J]. Chinese Journal of Power Sources, 2023, 47(9): 1122-1125.
    [28] LI K, GAO X, LIU C X, et al. A novel co-estimation framework of state-of-charge, state-of-power and capacity for lithium-ion batteries using multi-parameters fusion method[J]. Energy, 2023, 269: 126820. doi: 10.1016/j.energy.2023.126820
    [29] LAI X, YI W, KONG X D, et al. Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation[J]. Journal of Energy Storage, 2020, 30: 101514. doi: 10.1016/j.est.2020.101514
    [30] JUN A, TAKUYA N, TOSHIYUKI N, et al. Battery internal short-circuit detecting device and method, battery pack, and electronic device system: US, 2010201321-A1 [P/OL]. (2010-08-12)[2023-04-32]. https://pubchem.ncbi.nlm.nih.gov/patent/US-2010201321-A1
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  18
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-25
  • 修回日期:  2024-06-06
  • 网络出版日期:  2025-10-25

目录

    /

    返回文章
    返回