• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于外码分块编码的BATS码度优化

杨柳 阴慧颖 马征 刘恒 王士恒

杨柳, 阴慧颖, 马征, 刘恒, 王士恒. 基于外码分块编码的BATS码度优化[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230670
引用本文: 杨柳, 阴慧颖, 马征, 刘恒, 王士恒. 基于外码分块编码的BATS码度优化[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20230670
YANG Liu, YIN Huiying, MA Zheng, LIU Heng, WANG Shiheng. Degree Optimization of Batched Sparse Codes Using Outer Code Block Encoding[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230670
Citation: YANG Liu, YIN Huiying, MA Zheng, LIU Heng, WANG Shiheng. Degree Optimization of Batched Sparse Codes Using Outer Code Block Encoding[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230670

基于外码分块编码的BATS码度优化

doi: 10.3969/j.issn.0258-2724.20230670
基金项目: 国家自然科学基金项目(U2268201,62020106001)
详细信息
    作者简介:

    杨柳(1978—),女,副教授,博士,研究方向为通信工程,E-mail:yangliu@swjtu.edu.cn

    通讯作者:

    马征(1977—),男,教授,博士,研究方向为信息与编码理论、无线通信,E-mail:zma@home.swjtu.edu.cn

  • 中图分类号: TN911.22

Degree Optimization of Batched Sparse Codes Using Outer Code Block Encoding

  • 摘要:

    为解决分批稀疏码(BATS 码)在现有外码分块编码方案下,由于外码随机分批而导致的数据重复译码及资源浪费问题,系统地研究基于外码分块编码方案的 BATS 码理论批次数优化与动态适应性问题. 首先,在已知丢包率的条件下,构建 BATS 码批次数消耗分析模型,并推导得出最优度值的计算方法,以此应对现有方案在计算理论批次数以及确定最小化批次数消耗的最优度值方面所面临的挑战;其次,针对信道丢包率未知的场景,提出一种基于强化学习的BATS码动态度优化方法,借助智能学习机制,在丢包率未知的情况下实时获取度值;最后,通过仿真实验对所构建的理论模型和提出的动态优化方法进行评估. 理论分析结果显示,所构建的基于外码分块的传输模型及其理论批次数计算公式,能够精准计算批次数消耗并确定最优度值. 仿真结果进一步证明,在丢包率未知的场景下,所提出的强化学习优化方案的平均批次数消耗低于固定度值方案,且在动态信道环境中能够保持良好的性能表现.

     

  • 图 1  参数a, b, TN四者关系

    Figure 1.  Relationship among parameters a, b, T, and N

    图 2  基于强化学习的BATS码度优化流程

    Figure 2.  Flowchart of degree optimization of BATS code based on reinforcement learning

    图 3  丢包率为0.1时,理论计算值与仿真传输次数对比

    Figure 3.  Comparison between theoretically calculated value and simulated transmission times at packet loss rate of 0.1

    图 4  丢包率为0.2时,理论计算值与仿真传输次数对比

    Figure 4.  Comparison between theoretically calculated value and simulated transmission times at packet loss rate of 0.2

    图 5  跳数为3跳时,度值13~19下的理论传输次数

    Figure 5.  Theoretical transmission times with degree values of 13–19 and hops of 3

    图 6  跳数为1跳时,度值15~22下的理论传输次数

    Figure 6.  Theoretical transmission times with degree values of 15–22 and hop of 1

    表  1  传输次数仿真参数

    Table  1.   Simulation parameters of transmission times

    仿真参数 取值
    输入数据包数/个 100
    批次大小/批次 32
    数据包长度/bit 100
    度值 16~19
    蒙特卡洛仿真次数/次 1500
    丢包率/% 0.1, 0.2
    下载: 导出CSV

    表  2  基于度值粗调强化学习的BATS码传输仿真参数

    Table  2.   Simulation parameters for BATS code transmission based on degree value coarse-tuning reinforcement learning

    仿真参数 取值
    原始数据包数/个 100
    传输网络的跳数/跳 3
    丢包率/% 0.2
    批次数/批次 32
    数据包所含的比特数/bit 100
    度值 1~32
    奖赏折扣/% 0.9
    更新步长 0.1
    最大学习次数/次 200
    贪心策略的贪心概率/% 0.1
    反馈函数系数 10
    门限参数 1.3
    下载: 导出CSV

    表  3  网络跳数为3跳时的Q表

    Table  3.   Q-table with network hops of 3

    度值/个 度值减 1 度值不变 度值加 1
    12 −∞ −∞ + ∞
    13 −∞ 0.0405 1.1195
    14 0.5179 3.1447 7.0977
    15 3.8233 0.0099 0.0189
    16 0.4767 0.1405 1.4218
    17 1.5722 0.0614 1.3744
    18 2.7366 0.5664 2.5214
    19 4.2853 1.1138 −∞
    20 + ∞ −∞ −∞
    下载: 导出CSV

    表  4  基于度值精调强化学习的BATS码传输仿真参数

    Table  4.   Simulation parameters for BATS code transmission based on degree value fine-tuning reinforcement learning

    仿真参数 取值
    原始数据包数/个 100
    传输网络的跳数/跳 1
    丢包率/% 0.2
    批次数/批次 32
    数据包所含的比特数/bit 100
    度值 1~32
    最大学习次数/次 30
    下载: 导出CSV

    表  5  网络跳数为1跳时第1次强化学习后的Q表

    Table  5.   Q-table after first reinforcement learning with network hop of 1

    度值 度值减 1 度值不变 度值加 1
    14 −∞ −∞ + ∞
    15 −∞ 0.1617 0.6505
    16 0.2911 0.2470 2.5826
    17 1.4226 0.0564 1.0785
    18 1.2134 0.1452 1.2383
    19 2.2049 0.3014 1.0891
    20 0.9744 0.7888 0.3698
    21 1.1663 0.2979 3.5123
    22 5.4088 0.0458 −∞
    23 + ∞ −∞ −∞
    下载: 导出CSV

    表  6  网络跳数为1跳时度值精调强化学习后的Q表

    Table  6.   Q-table after degree value fine-tuning reinforcement learning with network hop of 1

    当前度值 度值跳变为 17 度值跳变为 20
    17 0.7007 1.3088
    20 0.9443 0.3196
    下载: 导出CSV
  • [1] CHOU P A, WU Y, JAIN K. Practical network coding[C]//Proceeding of the 41th Annual Allerton Conference on Communications, Controls and Computations. Monticello: IEEE, 2003: 1-10.
    [2] HO T, KOETTER R, MEDARD M, et al. The benefits of coding over routing in a randomized setting[C]//IEEE International Symposium on Information Theory. Yokohama: IEEE, 2003: 442.
    [3] JAGGI S, CASSUTO Y, EFFROS M. Low complexity encoding for network codes[C]//2006 IEEE International Symposium on Information Theory. Seattle: IEEE, 2006: 40-44.
    [4] SANDERS P, EGNER S, TOLHUIZEN L. Polynomial time algorithms for network information flow[C]// Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures. San Dieg: ACM, 2003: 286-294.
    [5] XU X L, ZENG Y, GUAN Y L, et al. Expanding-window BATS code for scalable video multicasting over erasure networks[J]. IEEE Transactions on Multimedia, 2018, 20(2): 271-281. doi: 10.1109/TMM.2017.2742699
    [6] YANG J, SHI Z P, WANG C X, et al. Design of optimized sliding-window BATS codes[J]. IEEE Communications Letters, 2019, 23(3): 410-413. doi: 10.1109/LCOMM.2019.2895867
    [7] WANG S H, LIU H, MA Z, et al. Precoded batched sparse codes transmission based on low-density parity-check codes[C]//2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). Helsinki: IEEE, 2022: 9860907.1-9860907.5.
    [8] WANG S H, LIU H, MA Z, et al. Chunked BATS codes under time-invariant and time-variant channels[C]//2022 IEEE 95th Vehicular Technology Conference (VTC2022-Spring). Helsinki: IEEE, 2022: 9860749.1- 9860749.5.
    [9] LUBY M G, MITZENMACHER M , SHOKROLLAHI M A. Analysis of random processes via AND/OR tree evaluations[C]//ACM-SIAM Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics. San Francisco: [s.n.], 1998: 364-373.
    [10] LUBY M. LT codes[C]//The 43rd Annual IEEE Symposium on Foundations of Computer Science. Vancouver: IEEE, 2002: 271-280.
    [11] YANG S H, YEUNG R W. BATS codes: theory and practice[M]. [S.l.]: Morgan & Claypool Publishers, 2017.
    [12] XU X L, GUAN Y L, ZENG Y, et al. Quasi-universal BATS code[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3497-3501. doi: 10.1109/TVT.2016.2594051
    [13] YANG S H, YEUNG R W. Batched sparse codes[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5322-5346. doi: 10.1109/TIT.2014.2334315
    [14] YANG S H, YEUNG R W. BATS codes: theory and practice[M]. [S.l.]: Morgan & Claypool Publishers, 2017.
    [15] DIMAKIS A G, GODFREY P B, WU Y, et al. Network coding for distributed storage systems[C]//The 26th IEEE International Conference on Computer Communications. Anchorage: IEEE, 2007: 2000-2008.
    [16] CHACHULSKI S, JENNINGS M, KATTI S, et al. Trading structure for randomness in wireless opportunistic routing[J]. ACM SIGCOMM Computer Communication Review, 2007, 37(4): 169-180. doi: 10.1145/1282427.1282400
    [17] WANG M A, LI B C. Network coding in live peer-to-peer streaming[J]. IEEE Transactions on Multimedia, 2007, 9(8): 1554-1567. doi: 10.1109/TMM.2007.907460
    [18] KATTI S, RAHUL H, HU W J, et al. XORs in the air: practical wireless network coding[J]. IEEE/ACM Transactions on Networking, 2008, 16(3): 497-510. doi: 10.1109/TNET.2008.923722
    [19] CHOU P A, WU Y, JAIN K. Practical network coding[C]//Proceeding of the 41th Annual Allerton Conference on Communications, Controls and Computations, Monticello: IEEE, 2003: 1-10.
    [20] DUFFY D G. Advanced engineering mathematics[M]. New York: CRC Press, Inc. , 2022.
    [21] WATKINS C J C H. Learning from delayed rewards [D]. Cambridge: University of Cambridge, 1989.
    [22] 胡晶晶, 黄有方. 两个轴辐式网络协同建设的多层编码遗传算法[J]. 西南交通大学学报, 2020, 55(5): 971-979.

    HU Jingjing, HUANG Youfang. Multi-layer coded genetic algorithm with collaborative construction of two hub-and-spoke networks[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 971-979.
    [23] 范平志, 周维曦. 高移动无线通信抗多普勒效应技术研究进展[J]. 西南交通大学学报, 2016, 51(3): 405-417. doi: 10.3969/j.issn.0258-2724.2016.03.001

    FAN Pingzhi, ZHOU Weixi. Advances in anti-Doppler effect techniques for high mobility wireless communications[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 405-417. doi: 10.3969/j.issn.0258-2724.2016.03.001
    [24] 周敬轩, 包卫东, 王吉, 等. 基于编-解码器结构的无人机群多任务联邦学习[J]. 西南交通大学学报, 2024, 59(4): 933-941.

    ZHOU Jingxuan, BAO Weidong, WANG Ji, et al. Multi-task federated learning for unmanned aerial vehicle swarms based on encoder-decoder architecture[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 933-941.
    [25] 朱西平, 方旭明. 基于网络编码的无线多跳自组网连接性增强[J]. 西南交通大学学报, 2010, 45(6): 972-976.

    ZHU Xiping, FANG Xuming. Connectivity enhancement based on network coding for wireless multi-hop ad hoc networks[J]. Journal of Southwest Jiaotong University, 2010, 45(6): 972-976.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  39
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-10
  • 修回日期:  2025-07-22
  • 网络出版日期:  2025-09-17

目录

    /

    返回文章
    返回