Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

机械加工质量预测研究现状与发展趋势

高宏力 孙弋 郭亮 由智超 刘岳开 李世超 雷云聪

许炜萍, 刘易然, 黄谦, 刘旭, 赵楚轩, 王呼佳, 杨朋, 孙克国. 结合型式对地铁车站上盖物业的振动响应影响[J]. 西南交通大学学报, 2024, 59(3): 653-662. doi: 10.3969/j.issn.0258-2724.20220284
引用本文: 高宏力, 孙弋, 郭亮, 由智超, 刘岳开, 李世超, 雷云聪. 机械加工质量预测研究现状与发展趋势[J]. 西南交通大学学报, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085
XU Weiping, LIU Yiran, HUANG Qian, LIU Xu, ZHAO Chuxuan, WANG Hujia, YANG Peng, SUN Keguo. Influence of Combination Types on Vibration Response of Superstructure of Subway Station[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 653-662. doi: 10.3969/j.issn.0258-2724.20220284
Citation: GAO Hongli, SUN Yi, GUO Liang, YOU Zhichao, LIU Yuekai, LI Shichao, LEI Yuncong. Research Status and Development Trend of Machining Quality Prediction[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085

机械加工质量预测研究现状与发展趋势

doi: 10.3969/j.issn.0258-2724.20220085
基金项目: 国家自然科学基金(51775452);中央引导地方科技发展专项资金(2020ZYD012)
详细信息
    作者简介:

    高宏力(1971—),男,教授,研究方向为设备智能化状态监测与故障诊断技术,E-mail:hongligao@swjtu.edu.cn

  • 中图分类号: TH878;TG547

Research Status and Development Trend of Machining Quality Prediction

  • 摘要:

    机械加工质量预测是智能制造的重要组成内容,也是实现质量闭环控制的前提条件,对推动智能制造系统真正落地应用具有极其重要的作用. 在对机械加工质量预测的历史进行简要回顾时发现,学者多将研究重点放在机床某一关键部件对加工质量影响的机理研究,却鲜见部件耦合影响的关联性研究. 基于上述难题,本文首先剖析影响机械加工质量的7类要素,包括刀具几何参数、切削参数、切削液类型、热误差与热变形、数控机床零部件性能退化、切削颤振以及系统特性;随后,根据各要素数据种类和测量方式的不同,将机械加工质量监测与预测方法划分为4大类,包括机器视觉测量、功率测量、振动测量以及其他测量方法,并对各方法的技术特点、局限性和发展动态进行了阐述;最后,考虑各机械加工质量监测与预测方法的不足,指出材料切削机制研究、数据质量评估方法、面向工业现场数据库构建的标准以及质量预测信息的智能表征与可视化等方面可能是未来的发展趋势.

     

  • 地铁具有交通量大、速度快、污染程度小、占地面积小等优点,能在很大程度上缓解城市地面交通压力,刺激城市经济,带动城市经济发展. 但由于施工成本高、工期长、资金回收率高,地铁大都会处于亏损状态,不得不寻求发展新模式. “地铁 + 上盖物业”可以有效利用和节约土地资源,带动相关产业的联合发展,从而提高地铁建设和运营的科学性和经济性.

    地铁振动通过道床、隧道结构和基础传递到上层建筑,进而影响上层建筑和人类活动[1-2]. 国内外科学家对此做了大量研究. 邹超[3]以地铁车辆段及其上部建筑为研究对象,分析地铁车辆段及其上部建筑的振动传播规律,建立建筑振动预测模型,提出了有效的振动控制措施. 袁葵[4]分析试车线上盖建筑的车致振动机理、振动传播规律,在此基础上,提出减振降噪措施. 吕文婷[5]利用有限元软件建立车辆段上盖物业模型,并对其振动情况进行预测. 谢伟平等[6]结合2个实际工程,研究地铁列车进出车辆段对上部建筑特性振动的影响,并分析车辆段的振动荷载特性. Qu等[7]研究了地铁列车和公路车辆同时通过时的地面各测点振动响应. Real等[8]建立三维有限元模型,并用现场数据进行验证,预测铁路列车的振动. 赵彦辉[9]基于现场振动测试,探讨空沟和填充沟隔振措施的隔振效果. Yang等[10]通过相似模型试验,研究不同隧道断面对隧道及周围土体动力响应的影响. Zhang等[11]在模型试验中施加了扫频载荷,研究积分横向通道(ITP)的影响机理,提出一种新型的组装横向通道(ATP),并研究其减振效果. 郭治岳等[12]建立一个精细的数值分析模型,研究地铁附近建筑物的振动发展特征. 兰凯等[13]采用两步分析方法,预测列车以不同速度通过时引起的上盖建筑振动,并判断其是否满足标准要求. 孟坤等[14]认为在列车通行过程中,公路桥梁结构构件均存在明显的振动,但未发生扩散性共振效应,振动幅值很小.

    国内外科学家也对地铁荷载进行了大量研究:陈行[15]使用国际公认的时间拟合公式确定高速列车的振动载荷;马龙祥等[16]基于无限-周期结构理论,建立车轨动力耦合模型,分析振动源车轨系统的竖向振动,计算列车在频率范围内通过钢轨传递到隧道基底的竖向振动激振力. 基于轮轨关系理论,刘凯[17]建立车辆-轨道系统的动力学分析模型,模拟拉伸载荷;刘维宁等[18]构建高精度的车轨耦合解析模型,并将计算结果与实测数据进行了对比.

    综上所述,以往的研究主要集中在地铁振动对车辆段[19]或相邻建筑物的影响[20],而对不同结合类型地铁车站及其上方的动力反应特性的研究很少. 本文基于轨道车辆垂向耦合动力学理论,确定地铁B列列车的振动荷载,建立三维精细数值模拟模型,从时域、频域以及动应力角度,研究不同结合型式下地铁上盖物业的动力响应规律. 研究结果旨在为地铁车站上盖物业的结构设计和动力分析提供参考.

    地铁车站与上盖物业的结合型式主要有层间夹土和板、柱等结构直接相连2种型式,在此将其分别归为“软结合”“硬结合”. 其中,“软结合”是上盖物业与地铁车站结构不直接相连,二者之间存在回填或原状夹层,两结构间无刚性连接. “硬结合”是上盖物业与地铁车站间采用刚性连接,具体又分为:1) 硬结合Ⅰ,物业首层作为地铁车站顶板(板共用);2) 硬结合Ⅱ,柱网结合型式(板不共用). 2种结合型式如图1所示.

    图  1  软、硬结合示意
    Figure  1.  Soft and hard combinations

    列车-轨道振动系统动力学模型分析法是利用解析法或者有限元数值法求解列车荷载,以轮轨不平顺视为车辆振动的激励源,并通过轮轨间赫兹接触关系将其传递到轨道结构中,从而形成整个车轨系统的动力学耦合过程. 车辆-轨道垂向耦合振动的动力模型[21]包括车辆模型、轨道模型和轮轨模型[22]. 车辆模型包括车体、2个转向架以及2组轮对,共计10个自由度.

    依托工程为佛山金融高新地铁站,该站为地下2层双柱双跨岛式站台,上盖物业上方有商场及裙楼,车站于下方斜穿上盖建筑,轨道为无砟形式. 采用FLAC3D建立数值仿真模型,鉴于动力计算的难度和耗时,仅考虑受列车振动影响大的上部物业结构. 为减小模型边界效应,确定模型长121.4 m、宽64 m、高72.5 m,地铁车站位于整体模型纵向中心位置. 为精确模拟波的传播,模型网格尺寸应小于输入波形最高频率对应波长的1/8~1/10[23]. 在轨行区、站厅层(A0)及上盖物业(A1~A4)楼板设置25个测点,模型、测点位置及编号见图2.

    图  2  数值仿真模型及测点布置(单位:m)
    Figure  2.  Numerical simulation model and layout of measuring points (unit: m)

    周边岩土体采用理想弹塑性模型并服从Mohr-Coulomb屈服准则[24],车站结构与上盖物业[25]均为线弹性模型[26]. 动力分析中选用静态边界条件,可有效减小模型边界上的入射波影响[27]. 具体做法是在模型的法向与切向分别设置阻尼器,从而实现吸收入射波的目的.

    阻尼器所提供的法向黏性力tn和切向黏性力ts分别为

    {tn=ρCpvn,ts=ρCsvs, (1)

    式中:vnvs分别为模型边界上法向和切向速度分量,m/s;ρ为介质密度,kg/m3CpCs分别为P波和S波的波速,m/s.

    根据地铁站周边地层勘察资料,车站采用C30混凝土,上盖物业采用C25混凝土,地层、轨道和相关结构的物理力学参数取值如表1表2所示.

    表  1  地层及结构物理力学参数
    Table  1.  Physical and mechanical parameters of strata and structures
    序号名称重度/(KN·m−3弹性模量/MPa泊松比厚度/m内摩擦角/(°)黏聚力/kPa
    1素填土16.518.000.333.55.79.4
    2淤泥质粉细砂17.130.000.256.023.0
    3粉质黏土19.8105.000.322.522.622.2
    4全风化粉砂岩19.3225.000.293849.310.3
    5钢轨78.52.01×1050.30
    6地铁车站24.03.00×1040.20
    7上盖物业24.02.80×1040.20
    下载: 导出CSV 
    | 显示表格
    表  2  轨道部件物理力学参数
    Table  2.  Physical and mechanical parameters of track components
    钢轨 扣件 道床板
    质量/
    (kg·m−1
    密度/
    (kg·m−3
    弹性
    模量/GPa
    泊松比 垂向刚度/
    (MN·m−1
    扣件间距/m 弹性模量/
    GPa
    泊松比 密度/
    (kg·m−3
    60 7850 205.9 0.30 59.2 0.6 32.5 0.24 2400
    下载: 导出CSV 
    | 显示表格

    瑞利阻尼C能够较好减弱系统自振模式的振幅,其矩阵计算如式(2)所示.

    C=αM+βK, (2)

    式中:αβ分别为与质量、刚度成比例的阻尼常数,MK分别为质量、刚度矩阵.

    阻尼常数可通过最小临界阻尼比和最小中心频率确定. 岩土材料临界阻尼比一般是2%~5%[24],而结构系统的临界阻尼比一般是2%~10%[28]. 模型基本构架大多为矩形块体,相对简单,可采用自振频率作为中心频率. 最终,通过试算得到中心频率为2.1 Hz,土体的质量和刚度阻尼常数分别为0.105、0.024,结构系统的质量和刚度阻尼常数分别为0.042、0.010.

    移动荷载与静载对结构的动力响应存在很大区别[29],在列车运行时,经过轨道上不同位置扣件的反力时程曲线在波形上除相位存在差异外,荷载时程曲线及频谱特性基本一致,该相位差的存在是由于列车通过相邻两观测点的时刻不同所导致的. 因此,将前述计算得出的列车荷载作用在钢轨上,施加移动的轮轨作用力. 首先,根据车速和沿列车行进方向单元的长度,计算出列车通过一个单元所需要的时间Δt,再将Δt除以动力时间步长,得到相邻单元所间隔的时间步数,进而实现对不同位置单元施加移动列车荷载. 荷载施加如图3所示,图中,ft为列车振动荷载.

    图  3  荷载施加示意
    Figure  3.  Load application

    为验证列车荷载确定方法和构建数值模型的准确性,对依托工程的地铁列车振动进行了现场测试,将数值仿真结果与该地铁站测试数据进行时域和频域的对比分析. 振动信号采集仪器主要有加速度传感器及TST5912动态信号测试分析系统. 测试站点位于该站负1层的站厅层(A0)及上盖物业1~4层(A1~A4),安排专人负责采集列车经过时的振动信号.

    该地铁站与上方裙楼及物业的连接方式是以物业首层楼板作为地铁站顶板,故采用2.2节“网格划分”给出的数值模型,仅去除掉软结合夹层,边界条件与材料阻尼参数均与2.2节和2.3节相同,数值仿真模型如图4所示.

    图  4  数值仿真模型
    Figure  4.  Numerical simulation model

    结合列车速度信息,选取现场实测上盖物业1层(A1)加速度的时程数据,与列车速度40 km/h时数值仿真结果进行对比,并将两者加速度数据进行1/3倍频程转换,对现场实测与数值仿真的加速度级进行对比,结果如图5所示.

    图  5  数值仿真与现场实测结果对比
    Figure  5.  Comparison of numerical simulation and field measured results

    通过两者的对比分析可以看出:现场实测A1最大振动加速度为3.38 mm/s2,数值仿真计算站厅层最大振动加速度达到3.09 mm/s2,二者的误差为0.29 mm/s2;现场实测和数值仿真的1/3倍频程谱曲线贴合度较高,仅部分频率存在一定差异. 鉴于现场实测不可避免地会受到环境、设备及行人等影响,少量偏差在所难免,但二者数据分布基本一致,可以认为数值仿真方法与计算参数具有良好的可靠性.

    在数值仿真方法可行、计算参数合理的基础上,建立软结合、硬结合Ⅰ型、硬结合Ⅱ型3种型式下地铁车站上盖物业数值仿真模型,从时域、频域以及动应力出发,研究地铁列车以最大设计速度80 km/h运行时,上盖物业车致振动影响及差异.

    限于篇幅,以断面3的测点振动数据为例进行分析,其振动加速度时程曲线如图68所示.

    图  6  软结合型式下各楼层加速度时程曲线
    Figure  6.  Acceleration time-history curves of each floor under soft combination
    图  7  硬结合Ⅰ型下各楼层加速度时程曲线
    Figure  7.  Acceleration time-history curves of each floor under hard combination Ⅰ
    图  8  硬结合Ⅱ型下各楼层加速度时程曲线
    Figure  8.  Acceleration time-history curves of each floor under hard combination Ⅱ

    图68可看出:1) 随着列车接近、穿越并驶离建筑物,振动加速度呈现明显的先增大、后减小的规律. 2) 软结合型式下,站厅层A0振动加速度峰值最大,为41.20 mm/s2,上盖物业A1~A4振动加速度峰值分别为12.73、15.61、16.78、13.78 mm/s2,A0到A1振动加速度峰值衰减了69.10%;硬结合Ⅰ型下,A0振动加速度峰值为43.84 mm/s2,A1~A4分别为42.93、50.36、33.56、44.26 mm/s2,A0到A1振动加速度峰值减小了2.08%;硬结合Ⅱ型下,A0振动加速度峰值为32.68 mm/s2,A1~A4分别为33.64、43.47、27.13、30.92 mm/s2,A0到A1振动加速度峰值增大了2.94%. 3) 软结合型式下,上盖物业各楼层振动加速度整体小于硬结合型式,且软结合型式A0到A1加速度衰减较大,而硬结合型式下变化很小,说明软结合型式的间隔土对列车振动有削减作用. 4) 硬结合Ⅰ型各楼层振动加速度略大于硬结合Ⅱ型,原因是硬结合Ⅱ型的车站-上盖物业刚度更大.

    依据断面3各测点振动加速度的计算结果,采用快速傅里叶变换将时域结果转换到频域,通过MATLAB得到1/3倍频程各中心频率的振动加速度级. 3种结合型式下各测点加速度级峰值曲线如图9所示.

    图  9  各测点加速度级峰值
    Figure  9.  Peak values of acceleration level of each measuring point

    3种结合型式下各测点加速度级峰值曲线如图9所示. 以断面3为例,软结合型式下地铁车站上盖物业加速度级最大值位于A0,为79.5 dB,A1的值为68.2 dB,较A0减小了11.3 dB,说明地铁车站与上盖物业结构间的间隔土对列车振动有较大的衰减作用;除A1外,各楼层加速度级最大值均位于断面3,加速度级从断面3往两侧逐渐减小,说明对于同一楼层,随着距振源距离的增大振动减小. 硬结合Ⅰ型与硬结合Ⅱ型地铁车站上盖物业加速度级水平与竖向分布规律基本相同;对于上盖物业同一楼层,均是断面3加速度级最大,往两侧逐渐减小,说明随着距振源距离的增大振动减小;地铁车站上盖物业加速度级最大值均位于A4,硬结合Ⅰ型最大值为83.4 dB,硬结合Ⅱ型最大值为79.4 dB,均较A0有所增大. 硬结合型式下,上盖物业加速度级整体上较软结合大,并且硬结合Ⅰ型大于硬结合Ⅱ型. 因此,在条件允许的情况下,地铁车站上盖物业优先选择软结合型式,其次选择硬结合Ⅱ型.

    图10为3种结合型A1各断面振动加速度频谱,图11为3种结合型断面3各楼层的振动加速度频谱. 由图1011可以看出:3种结合型,上盖物业车致振动响应频率的分布规律基本一致,上盖物业车致振动频率主要集中在40~90 Hz;对于同一断面,各楼层振动响应频率范围及振幅变化不大.

    图  10  A1各断面振动加速度频谱
    Figure  10.  Vibration acceleration spectrum of each section of the A1 floor
    图  11  断面3各楼层振动加速度频谱
    Figure  11.  Vibration acceleration spectrum of the third section of each floor

    3种结合型式下,断面3各楼层测点第一主应力时程曲线如图12所示,各主应力峰值如表3所示.

    图  12  3种型式下第一主应力时程曲线
    Figure  12.  Time-history curves of first principal stress under different combination types

    图12表3可以看出:软结合、硬结合Ⅰ型、硬结合Ⅱ型的第一主应力最大值均位于A0,分别为899.33、849.54、952.66 Pa,A1~A4第一主应力最大值远小于A0最大值;软结合型式第一主应力从A0到A1衰减了85.81%,衰减较大,主要是车站与上盖物业间隔土削弱了列车振动,进而减小了列车荷载作用下上盖物业的附加应力;硬结合Ⅰ、Ⅱ型第一主应力从A0到A1分别衰减了63.46%、72.27%,比软结合型衰减慢,主要是因为车站与上盖物业刚性连接,列车振动可以通过连接柱向上传播.

    表  3  不同结合型断面3各楼层的第一主应力峰值
    Table  3.  First principal stress peak value of the third section of each floor under different combination types
    楼层软结合硬结合Ⅰ硬结合Ⅱ
    A0899.33849.54952.66
    A1127.60310.39264.16
    A2113.31264.24180.05
    A3109.44200.76172.24
    A4120.30233.98192.38
    衰减率/%85.8163.4672.27
    注:衰减率指A0到A1的第一主应力衰减率.
    下载: 导出CSV 
    | 显示表格

    采用现场测试和数值仿真手段对提出的地铁车站-上盖物业间的软结合、硬结合Ⅰ型和硬结合Ⅱ型3种型式的车致振动响应差异进行了研究,得到如下结论:

    1) 依托现场实测数据验证了数值仿真方法与计算参数的可靠性,两者的A1最大振动加速度差值仅为0.29 mm/s2,且1/3倍频程谱曲线分布也基本一致.

    2) 从A0到A1,振动加速度峰值软结合型减小了69.10%,硬结合Ⅰ型减小了2.08%,硬结合Ⅱ型增大了2.94%;硬结合型式下上盖物业振动加速度较软结合型式大.

    3) 3种结合型式下,上盖物业振动的频率主要在40~90 Hz,且对于上盖物业同一楼层,车致振动随着距振源距离的增大而逐渐减小;软结合型A1加速度级最大值为68.2 dB,较A0减小11.3 dB;硬结合型上盖物业加速度级整体较软结合大,硬结合Ⅰ型上盖物业加速度级最大值为83.4 dB,硬结合Ⅱ型为79.4 dB.

    4) 地铁列车振动造成上盖物业附加第一主应力很小,且在向上传播过程中衰减很快;从A0到A1,软结合型、硬结合Ⅰ型、硬结合Ⅱ型分别衰减85.81%、63.46%、72.27%,间隔土对附加应力有明显衰减作用.

    5) 在相同列车荷载作用下,列车振动对软结合型地铁车站上盖物业影响最小,其次为硬结合Ⅱ型,最后为硬结合Ⅰ型;实际工程中,如果现场条件允许,建议优选软结合型式.

  • 图 1  机械加工质量的影响因素

    Figure 1.  Influencing factors of machining quality

    图 2  基于视觉测量的加工质量预测方法现状

    Figure 2.  Machining quality prediction methods based on visual measurement

    图 3  表面质量的各成分分析

    Figure 3.  Component analysis of surface quality

    图 4  不同机械加工过程的颤振现象

    Figure 4.  Chatter phenomena in different machining processes

    图 5  机器视觉测量方法的发展

    Figure 5.  Development of machine vision measurement methods

    图 6  功率测量方法的发展

    Figure 6.  Development of machine vision measurement methods

    图 7  典型实验平台

    Figure 7.  Typical experimental platform

    图 8  不同粗糙度下的时域/频域信号

    Figure 8.  Time domain/frequency domain signals with different roughness

    图 9  机械加工质量预测的发展趋势

    Figure 9.  Development trend of machining quality prediction

    表  1  加工质量影响因素统计

    Table  1.   Statistics of influencing factors of processing quality

    类型子类型影响是否显著主要检测手段文献
    刀具几何参数材料优化离线监测[9-10]
    结构优化离线监测[6, 12-16]
    切削参数在线监测[20-25, 27, 29]
    切削液类型离线监测[32-36]
    热误差与热变形离线监测[37-41]
    机床零部件性能退化丝杠在线监测[42-45]
    主轴在线监测[46-49]
    切削颤振在线监测、
    离线监测
    [50-54]
    刀具-工件-夹具-机床系统特性离线监测[55-57]
    下载: 导出CSV

    表  2  2种主要的视觉测量粗糙度等表面质量识别方法

    Table  2.   Comparison of two main visual measurement methods for surface quality recognition such as roughness

    测量方式优点缺点
     光学测量
    (白光干涉仪、超景深三维显微系统)
     非接触式测量,对被测工件无损伤;对区域的微观三维形貌的准确测量  单次检测区域较小;设备测试、维护较为昂贵;对检测环境要求高,容易受到现场加工环境影响
     视觉间接测量(基于机器视觉的加工纹理图样分析方法)  容易满足批量化测试需求,进而实现在线或在机测量;测试与监测过程自动化程度高,能够实现快速、高效地反馈工件加工质量情况  准确性和对于实际加工过程的多变工况、光源设置差异等情形的鲁棒性有待优化;对于颤振纹理识别效果
    较好
    下载: 导出CSV

    表  3  基于机器视觉的形状误差识别

    Table  3.   Shape error recognition based on machine vision

    识别任务硬件设备算法设计
    零件检测技术[66] CCD图像传感器  边缘检测、轮廓
    提取
     组件精密测量与装配方法[67]  基于双摄像机架构的自动装配系统  Canny算子、Radon变换、最小二乘拟合
    零件尺寸测量[68]  光源、相机与图像采集卡等  图像增强、图像滤波、边缘检测
    直线度误差检测[69]  LED背光照明、CCD相机、远心
    镜头
     平滑去噪、亚像素边缘提取、模板匹配
    径向跳动测量[73]  相机标定实验台、背光源、摄像机  代数与几何椭圆拟合、亚像素边缘检测、
    下载: 导出CSV

    表  4  振动信号预测表面粗糙度方法

    Table  4.   Surface roughness prediction method based on vibration signal

    作者采用信号方法结果数据集(工件数量)
    Hessainia Z等 [114] 轴向和径向振动信号、切削条件 TDA R=99.9% 训练集:27,测试集=训练集
    Upadhay V等[115] 三向振动信号、切削条件 TDA R2adj=93.2%,ˉer=3.5% 训练集:15,测试集=训练集
    Salgado D R等[116]
    三向振动信号、切削条件、刀具参数
    SSA ˉer=5.74% 训练集:35,测试集:20
    García P E等[117] 三向振动信号 SSA R2adj=87.8%,ˉer=14.60%
    R=92%
    训练集:270,测试集:90
    Kirby E D等[118] 轴向加速度信号、切削条件 TDA ˉer=5.00% 训练集:83,测试集:7
    Risbod K A等[119] 径向振动信号、切削条件 TDA er,max=5.00% 训练集:—,测试集:20
    Plaza E G等[120] 三向加速度信号、三向振动信号 FFT R2adj=86.7%,ˉer=9.80% 训练集:52,测试集:12
    下载: 导出CSV
  • [1] MASAHIKO J, ISAMU G, TAKESHI W. Development of cBN ball-nosed end mill with newly designed cutting edge[J]. Journal of Materials Processing Technology, 2007, 192/193: 48-54. doi: 10.1016/j.jmatprotec.2007.04.054
    [2] JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510. doi: 10.1016/j.ymssp.2005.09.012
    [3] TETI R, JEMIELNIAK K, O’DONNELL G. Advanced monitoring of machining operations[J]. CIRP Annals, 2010, 59(2): 717-739. doi: 10.1016/j.cirp.2010.05.010
    [4] 雷亚国,许学方,蔡潇,等. 面向机械装备健康监测的数据质量保障方法研究[J]. 机械工程学报,2021,57(4): 1-9. doi: 10.3901/JME.2021.04.001

    LEI Yaguo, XU Xuefang, CAI Xiao, et al. Research on data quality assurance for health condition monitoring of machinery[J]. Journal of Mechanical Engineering, 2021, 57(4): 1-9. doi: 10.3901/JME.2021.04.001
    [5] ARUNACHALAM R M, MANNAN M A, SPOWAGE A C. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools[J]. International Journal of Machine Tools and Manufacture, 2004, 44(9): 879-887. doi: 10.1016/j.ijmachtools.2004.02.016
    [6] RAO A, SARMA R. On local gouging in five-axis sculptured surface machining using flat-end tools[J]. Computer-Aided Design, 2000, 32(7): 409-420. doi: 10.1016/S0010-4485(99)00105-0
    [7] TOURNIER C, DUC E. Iso-scallop tool path generation in 5-axis milling[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(9/10): 867-875.
    [8] 刘献礼,姜志鹏,李茂月,等. 基于残留高度设计的模具加工用新型圆角端铣刀[J]. 机械工程学报,2015,51(5): 192-204. doi: 10.3901/JME.2015.05.192

    LIU Xianli, JIANG Zhipeng, LI Maoyue, et al. New rounded end mill for mold processing based on scallop-height[J]. Journal of Mechanical Engineering, 2015, 51(5): 192-204. doi: 10.3901/JME.2015.05.192
    [9] 姜彦翠,刘献礼,丁云鹏,等. 汽车大型覆盖件淬硬钢模具切削加工技术[J]. 哈尔滨理工大学学报,2013,18(1): 7-13. doi: 10.3969/j.issn.1007-2683.2013.01.002

    JIANG Yancui, LIU Xianli, DING Yunpeng, et al. Machining technology of hardened steel molds of automobile large covering[J]. Journal of Harbin University of Science and Technology, 2013, 18(1): 7-13. doi: 10.3969/j.issn.1007-2683.2013.01.002
    [10] CHEN J S B, HUANG Y K, CHEN M S. Feedrate optimization and tool profile modification for the high-efficiency ball-end milling process[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9): 1070-1076. doi: 10.1016/j.ijmachtools.2004.11.020
    [11] 张安山. 汽车模具小曲率面宽行加工技术研究及其刀具开发[D]. 哈尔滨: 哈尔滨理工大学, 2015.
    [12] CHEN L X, LIU Z Q, SHEN Q. Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys[J]. Tribology International, 2018, 122: 84-95. doi: 10.1016/j.triboint.2018.02.039
    [13] DENG J X, LIAN Y S, WU Z. Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings[J]. Surface and Coatings Technology, 2013, 222: 135-143. doi: 10.1016/j.surfcoat.2013.02.015
    [14] SUN J L, ZHOU Y H, DENG J X, et al. Effect of hybrid texture combining micro-pits and micro-grooves on cutting performance of WC/Co-based tools[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(9/10/11/12): 3383-3394.
    [15] JIANG W P. Bio-inspired self-sharpening cutting tool surface for finish hard turning of steel[J]. CIRP Annals, 2014, 63(1): 517-520. doi: 10.1016/j.cirp.2014.03.047
    [16] 潘晨,李庆华,胡恺星,等. 微织构刀具对工件表面残余应力影响有限元分析[J]. 组合机床与自动化加工技术,2020(1): 14-16,21.

    PAN Chen, LI Qinghua, HU Kaixing, et al. The effect of micro-textured tool on surface residual stress of workpiece based on finite element analysis[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(1): 14-16,21.
    [17] 马峰,张华,曹华军. 面向低能耗少切削液的多目标加工参数优化[J]. 机械工程学报,2017,53(11): 157-163. doi: 10.3901/JME.2017.11.157

    MA Feng, ZHANG Hua, CAO Huajun. Multi-objective machining parameters optimization for low energy and minimum cutting fluid consumption[J]. Journal of Mechanical Engineering, 2017, 53(11): 157-163. doi: 10.3901/JME.2017.11.157
    [18] 陈行政,李聪波,李丽,等. 面向能效的多工步数控铣削工艺参数多目标优化模型[J]. 计算机集成制造系统,2016,22(2): 538-546. doi: 10.13196/j.cims.2016.02.026

    CHEN Xingzheng, LI Congbo, LI Li, et al. Multi-objective parameter optimization model of multi-pass CNC milling for energy efficiency[J]. Computer Integrated Manufacturing Systems, 2016, 22(2): 538-546. doi: 10.13196/j.cims.2016.02.026
    [19] MOURA R R. The effect of application of cutting fluid with solid lubricant in suspension during cutting of Ti-6Al-4V alloy[J]. Wear, 2015, 332/333: 762-771. doi: 10.1016/j.wear.2015.02.051
    [20] 李聪波,朱岩涛,李丽,等. 面向能量效率的数控铣削加工参数多目标优化模型[J]. 机械工程学报,2016,52(21): 120-129. doi: 10.3901/JME.2016.21.120

    LI Congbo, ZHU Yantao, LI Li, et al. Multi-objective CNC milling parameters optimization model for energy efficiency[J]. Journal of Mechanical Engineering, 2016, 52(21): 120-129. doi: 10.3901/JME.2016.21.120
    [21] 王进峰,潘丽娟,邢迪雄,等. 基于能耗效率的SiCp/Al复合材料切削参数多目标优化[J]. 中南大学学报(自然科学版),2020,51(6): 1565-1574.

    WANG Jinfeng, PAN Lijuan, XING Dixiong, et al. Multi-objective optimization of cutting parameters on turning SiCp/Al composites based on energy efficiency[J]. Journal of Central South University (Science and Technology), 2020, 51(6): 1565-1574.
    [22] MAIER M, ZWICKER R, AKBARI M. Bayesian optimization for autonomous process set-up in turning[J]. CIRP Journal of Manufacturing Science and Technology, 2019, 26: 81-87. doi: 10.1016/j.cirpj.2019.04.005
    [23] KUMAR S P L. Measurement and uncertainty analysis of surface roughness and material removal rate in micro turning operation and process parameters optimization[J]. Measurement, 2019, 140: 538-547. doi: 10.1016/j.measurement.2019.04.029
    [24] 邓聪颖,叶波,禄盛,等. 基于切削稳定性与表面质量约束的铣削工艺参数优化研究[J]. 仪器仪表学报,2021,42(11): 190-199.

    DENG Congying, YE Bo, LU Sheng, et al. Optimization of milling process parameters considering the constraints of cutting stability and surface quality[J]. Chinese Journal of Scientific Instrument, 2021, 42(11): 190-199.
    [25] VOGLER M P, DEVOR R E, KAPOOR S G. On the modeling and analysis of machining performance in micro-endmilling, part I: surface generation[J]. Journal of Manufacturing Science and Engineering, 2004, 126(4): 685-694. doi: 10.1115/1.1813470
    [26] 石文天,刘玉德,丁悦,等. PCD刀具微细车削硬铝合金的表面质量研究[J]. 机床与液压,2011,39(17): 15-17. doi: 10.3969/j.issn.1001-3881.2011.17.005

    SHI Wentian, LIU Yude, DING Yue, et al. Research of surface quality in micro-turning aluminum alloy using PCD tools[J]. Machine Tool & Hydraulics, 2011, 39(17): 15-17. doi: 10.3969/j.issn.1001-3881.2011.17.005
    [27] 王慧,李南奇,赵国超,等. 基于航空铸造钛合金Ti-6Al-4V高速铣削参数的表面质量及切削效率优化[J]. 表面技术,2022,51(2): 331-337,346. doi: 10.16490/j.cnki.issn.1001-3660.2022.02.033

    WANG Hui, LI Nanqi, ZHAO Guochao, et al. Optimization of surface quality and cutting efficiency for high-speed milling parameters of titanium alloy Ti-6Al-4V for aviation casting[J]. Surface Technology, 2022, 51(2): 331-337,346. doi: 10.16490/j.cnki.issn.1001-3660.2022.02.033
    [28] 李俊烨,朱志宝,张心明,等. 异形截面孔磨粒流精密加工质量分析[J]. 中国机械工程,2021,32(17): 2063-2073. doi: 10.3969/j.issn.1004-132X.2021.17.007

    LI Junye, ZHU Zhibao, ZHANG Xinming, et al. Quality analysis for abrasive flow precision machining of special-shaped holes[J]. China Mechanical Engineering, 2021, 32(17): 2063-2073. doi: 10.3969/j.issn.1004-132X.2021.17.007
    [29] 刘枭,邓文君,陈海涛,等. 低温切削7075铝合金鳞刺形成规律及抑制措施[J]. 中国机械工程,2022,33(3): 261-269. doi: 10.3969/j.issn.1004-132X.2022.03.002

    LIU Xiao, DENG Wenjun, CHEN Haitao, et al. Scale thorn formation regularity and inhibitory measures in cryogenic cutting processes of aluminum alloy 7075[J]. China Mechanical Engineering, 2022, 33(3): 261-269. doi: 10.3969/j.issn.1004-132X.2022.03.002
    [30] KRISHNA P V, SRIKANT R R, RAO D N. Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel[J]. International Journal of Machine Tools and Manufacture, 2010, 50(10): 911-916. doi: 10.1016/j.ijmachtools.2010.06.001
    [31] MARKSBERRY P W. Micro-flood (MF) technology for sustainable manufacturing operations that are coolant less and occupationally friendly[J]. Journal of Cleaner Production, 2007, 15(10): 958-971. doi: 10.1016/j.jclepro.2006.01.006
    [32] KAYNAK Y, GHARIBI A, YILMAZ U. A comparison of flood cooling, minimum quantity lubrication and high pressure coolant on machining and surface integrity of titanium Ti-5553 alloy[J]. Journal of Manufacturing Processes, 2018, 34: 503-512. doi: 10.1016/j.jmapro.2018.06.003
    [33] 袁松梅,韩文亮,朱光远,等. 绿色切削微量润滑增效技术研究进展[J]. 机械工程学报,2019,55(5): 175-185. doi: 10.3901/JME.2019.05.175

    YUAN Songmei, HAN Wenliang, ZHU Guangyuan, et al. Recent progress on the efficiency increasing methods of minimum quantity lubrication technology in green cutting[J]. Journal of Mechanical Engineering, 2019, 55(5): 175-185. doi: 10.3901/JME.2019.05.175
    [34] YAN L T, ZHANG Q J, YU J Z. Analytical models for oil penetration and experimental study on vibration assisted machining with minimum quantity lubrication[J]. International Journal of Mechanical Sciences, 2018, 148: 374-382. doi: 10.1016/j.ijmecsci.2018.09.016
    [35] JAMIL M, KHAN A M, HEGAB H, et al. Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti–6Al–4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9/10/11/12): 3895-3909.
    [36] PARK K H, EWALD B, KWON P Y. Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling[J]. Journal of Tribology, 2011, 133(3): 031803.1-031803.8.
    [37] ZHANG Y, YANG J G, JIANG H. Machine tool thermal error modeling and prediction by grey neural network[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9/10/11/12): 1065-1072.
    [38] FU G Q, GONG H W, GAO H L, et al. Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(5/6): 2039-2055.
    [39] FU G Q, TAO C, XIE Y P, et al. Temperature-sensitive point selection for thermal error modeling of machine tool spindle by considering heat source regions[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(9/10): 2447-2460.
    [40] LI Y, ZHAO J, JI S J. Thermal positioning error modeling of machine tools using a bat algorithm-based back propagation neural network[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/6/7/8): 2575-2586.
    [41] LIU H. Thermal error robust modeling method for CNC machine tools based on a split unbiased estimation algorithm[J]. Precision Engineering, 2018, 51: 169-175. doi: 10.1016/j.precisioneng.2017.08.007
    [42] 高宏力,李登万,许明恒. 基于人工智能的丝杠寿命预测技术[J]. 西南交通大学学报,2010,45(5): 685-691. doi: 10.3969/j.issn.0258-2724.2010.05.006

    GAO Hongli, LI Dengwan, XU Mingheng. Intelligent monitoring system for screw life evaluation[J]. Journal of Southwest Jiaotong University, 2010, 45(5): 685-691. doi: 10.3969/j.issn.0258-2724.2010.05.006
    [43] ZHANG L. Instance-based ensemble deep transfer learning network: a new intelligent degradation recognition method and its application on ball screw[J]. Mechanical Systems and Signal Processing, 2020, 140: 106681.1-106681.14.
    [44] 郭亮,高宏力,张一文,等. 基于深度学习理论的轴承状态识别研究[J]. 振动与冲击,2016,35(12): 166-170,195. doi: 10.13465/j.cnki.jvs.2016.12.026

    GUO Liang, GAO Hongli, ZHANG Yiwen, et al. Research on bearing condition monitoring based on deep learning[J]. Journal of Vibration and Shock, 2016, 35(12): 166-170,195. doi: 10.13465/j.cnki.jvs.2016.12.026
    [45] TAN Y W, GUO L, GAO H L, et al. Deep coupled joint distribution adaptation network: a method for intelligent fault diagnosis between artificial and real damages[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12.
    [46] 高宏力. 切削加工过程中刀具磨损的智能监测技术研究[D]. 成都: 西南交通大学, 2005.
    [47] 高宏力,许明恒,傅攀,等. 基于动态树理论的刀具磨损监测技术[J]. 机械工程学报,2006,42(7): 227-230. doi: 10.3321/j.issn:0577-6686.2006.07.041

    GAO Hongli, XU Mingheng, FU Pan, et al. Tool wear monitoring based on dynamic tree[J]. Chinese Journal of Mechanical Engineering, 2006, 42(7): 227-230. doi: 10.3321/j.issn:0577-6686.2006.07.041
    [48] YOU Z C. On-line milling cutter wear monitoring in a wide field-of-view camera[J]. Wear, 2020, 460/461: 203479.1-203479.15. doi: 10.1016/j.wear.2020.203479
    [49] LIU Y K, YU Y X, GUO L, et al. Automatically designing network-based deep transfer learning architectures based on genetic algorithm for in situ tool condition monitoring[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9483-9493. doi: 10.1109/TIE.2021.3113004
    [50] 李忠群. 复杂切削条件高速铣削加工动力学建模、仿真与切削参数优化研究[D]. 北京: 北京航空航天大学, 2008.
    [51] 王跃辉,王民. 金属切削过程颤振控制技术的研究进展[J]. 机械工程学报,2010,46(7): 166-174. doi: 10.3901/JME.2010.07.166

    WANG Yuehui, WANG Min. Advances on machining chatter suppression research[J]. Journal of Mechanical Engineering, 2010, 46(7): 166-174. doi: 10.3901/JME.2010.07.166
    [52] 杨毅青,张斌,刘强. 铣削建模中多种切削力模型的分析比较[J]. 振动工程学报,2015,28(1): 82-90.

    YANG Yiqing, ZHANG Bin, LIU Qiang. Analysis and comparison of various cutting force models in the milling process simulation[J]. Journal of Vibration Engineering, 2015, 28(1): 82-90.
    [53] 张钊. 薄壁结构铣削过程颤振分析及抑制研究[D]. 上海: 上海交通大学, 2018.
    [54] 张奇. 铣削加工颤振稳定性分析和颤振辨识研究[D]. 上海: 上海交通大学, 2020.
    [55] 高翔,游红武,翁晓红,等. 机床系统静刚度试验用千分表测力环力学特性[J]. 轻工机械,2013,31(3): 28-31. doi: 10.3969/j.issn.1005-2895.2013.03.008

    GAO Xiang, YOU Hongwu, WENG Xiaohong, et al. Study on mechanical properties of dynamometer ring used in static stiffness experiment of machine tools system[J]. Light Industry Machinery, 2013, 31(3): 28-31. doi: 10.3969/j.issn.1005-2895.2013.03.008
    [56] 万小金. 工件−夹具−刀具系统的几何误差分析与预测研究[D]. 武汉: 华中科技大学, 2010.
    [57] 彭诚. 车铣复合机床静动态特性分析及关键部件的优化[D]. 合肥: 合肥工业大学, 2019.
    [58] 李轶尚. 基于机器视觉的清洁切削加工表面粗糙度在位测量方法及其系统构建[D]. 济南: 山东大学, 2021.
    [59] 李瑛. 拖拉机传动箱端面销孔加工质量机器视觉测量与预警分析[D]. 杭州: 浙江大学, 2019.
    [60] 万志坚. 非接触式表面粗糙度识别方法的研究[J]. 制造技术与机床,2006(10): 73-75. doi: 10.3969/j.issn.1005-2402.2006.10.028

    WAN Zhijian. Study on the method for non-contact roughness detection[J]. Manufacturing Technology and Machine Tool, 2006(10): 73-75. doi: 10.3969/j.issn.1005-2402.2006.10.028
    [61] 路恩会. 基于机器视觉的磨削表面粗糙度检测方法研究[D]. 长沙: 湖南大学, 2016.
    [62] CHEN W, ZOU B, LI Y S, et al. A study of a rapid method for detecting the machined surface roughness[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(9/10): 3115-3127.
    [63] 易怀安. 基于色彩信息的机器视觉粗糙度检测方法研究[D]. 长沙: 湖南大学, 2017.
    [64] 蔡雯,陈培锋,王英,等. 基于激光散射的表面粗糙度测量系统研究[J]. 激光技术,2020,44(5): 611-615. doi: 10.7510/jgjs.issn.1001-3806.2020.05.014

    CAI Wen, CHEN Peifeng, WANG Ying, et al. Research of surface roughness measurement system based on laser scattering[J]. Laser Technology, 2020, 44(5): 611-615. doi: 10.7510/jgjs.issn.1001-3806.2020.05.014
    [65] LI Y S, ZOU B, SHI Z Y, et al. Wear patterns and mechanisms of sialon ceramic end-milling tool during high speed machining of nickel-based superalloy[J]. Ceramics International, 2021, 47(4): 5690-5698. doi: 10.1016/j.ceramint.2020.10.155
    [66] 陈向伟,王龙山,刘庆民. 图像技术在微小零件几何尺寸测量中的应用[J]. 工具技术,2005,39(8): 86-89. doi: 10.3969/j.issn.1000-7008.2005.08.027

    CHEN Xiangwei, WANG Longshan, LIU Qingmin. Application of CCD image technology on measuring size of micro part[J]. Tool Engineering, 2005, 39(8): 86-89. doi: 10.3969/j.issn.1000-7008.2005.08.027
    [67] 朱萃. 基于机器视觉的微小型组件精密测量与装配[D]. 大连: 大连理工大学, 2010.
    [68] 雷红胜. 基于机器视觉的零件尺寸测量及加工精度分析[D]. 南昌: 南昌航空大学, 2014.
    [69] 王营营. 基于机器视觉的曲轴轴颈轴线直线度误差检测[D]. 太原: 太原科技大学, 2015.
    [70] 付泰,王桂棠,程书豪,等. 基于机器视觉的复杂平面零件尺寸精密检测[J]. 机电工程技术,2016,45(8): 7-9,84. doi: 10.3969/j.issn.1009-9492.2016.08.003

    FU Tai, WANG Guitang, CHENG Shuhao, et al. Size sophisticated detection based on machine vision complex plane parts[J]. Mechanical and Electrical Engineering Technology, 2016, 45(8): 7-9,84. doi: 10.3969/j.issn.1009-9492.2016.08.003
    [71] 陆兴华,魏盼. 基于机器视觉的柱状弹簧质量综合检测系统[J]. 工具技术,2017,51(12): 110-114. doi: 10.3969/j.issn.1000-7008.2017.12.029

    LU Xinghua, WEI Pan. Quality measuring system of cylindrical spring based on machine vision[J]. Tool Engineering, 2017, 51(12): 110-114. doi: 10.3969/j.issn.1000-7008.2017.12.029
    [72] 张海心. 基于机器视觉的轴类零件测量仪设计[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    [73] 包昊菁. 基于机器视觉的链轮径向跳动测量技术研究[D]. 长春: 吉林大学, 2020.
    [74] KHALIFA O O, DENSIBALI A, FARIS W. Image processing for chatter identification in machining processes[J]. The International Journal of Advanced Manufacturing Technology, 2006, 31(5/6): 443-449.
    [75] FENG Z, CHEN X. Image processing of the grinding wheel surface[J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(5/6): 452-458.
    [76] BAMBERGER H, RAMACHANDRAN S, HONG E, et al. Identification of machining chatter marks on surfaces of automotive valve seats[J]. Journal of Manufacturing Science and Engineering, 2011, 133(4): 041003.1-041003.4.
    [77] SZYDŁOWSKI M, POWAŁKA B. Chatter detection algorithm based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(5/6/7/8): 517-528.
    [78] LEI N, SOSHI M. Vision-based system for chatter identification and process optimization in high-speed milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/10/11/12): 2757-2769.
    [79] RIFAI A P, FUKUDA R, AOYAMA H. Surface roughness estimation and chatter vibration identification using vision-based deep learning[J]. Journal of the Japan Society for Precision Engineering, 2019, 85(7): 658-666. doi: 10.2493/jjspe.85.658
    [80] ZHU W G, ZHUANG J C, GUO B S, et al. An optimized convolutional neural network for chatter detection in the milling of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9/10): 3881-3895.
    [81] 王志学,刘献礼,李茂月,等. 切削加工颤振智能监控技术[J]. 机械工程学报,2020,56(24): 1-23. doi: 10.3901/JME.2020.24.001

    WANG Zhixue, LIU Xianli, LI Maoyue, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020, 56(24): 1-23. doi: 10.3901/JME.2020.24.001
    [82] SHI D F, GINDY N. Tool wear prediction based on wavelet transform and support vector machines[J]. ICINCO, 2011: 479-485.
    [83] 张航. 基于迁移学习的磨削表面粗糙度测量方法研究[D]. 长沙: 湖南大学, 2017.
    [84] 史雪春. 基于机器学习的切削状态监测技术研究[D]. 北京: 北京理工大学, 2018.
    [85] 唐梓珏. 激光熔化沉积熔池动态特征演化行为及关键形性质量预测研究[D]. 大连: 大连理工大学, 2020.
    [86] 贺晓辉,鄢萍,张佳毅,等. 功率信息互相关法的刀具破损在线监测[J]. 重庆大学学报,2011,34(9): 9-16. doi: 10.11835/j.issn.1000-582X.2011.09.002

    HE Xiaohui, YAN Ping, ZHANG Jiayi, et al. On-line tool breakage monitoring method based on power information and cross-correlation algorithm[J]. Journal of Chongqing University, 2011, 34(9): 9-16. doi: 10.11835/j.issn.1000-582X.2011.09.002
    [87] 王永新. 基于功率和神经网络的刀具状态在线监测研究[J]. 科技创新与应用,2012(7): 9-10.
    [88] KARANDIKAR J M, ABBAS A, SCHMITZ T L. Remaining useful tool life predictions in turning using Bayesian inference[J]. International Journal of Prognostics and Health Management, 2020, 4(2): 1-11.
    [89] DROUILLET C. Tool life predictions in milling using spindle power with the neural network technique[J]. Journal of Manufacturing Processes, 2016, 22: 161-168. doi: 10.1016/j.jmapro.2016.03.010
    [90] 谢楠,段明雷,高英强,等. 基于功率传感器的刀具磨损量预测方法[J]. 同济大学学报(自然科学版),2017,45(3): 420-426. doi: 10.11908/j.issn.0253-374x.2017.03.017

    XIE Nan, DUAN Minglei, GAO Yingqiang, et al. Tool wear prediction approach based on power sensor[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 420-426. doi: 10.11908/j.issn.0253-374x.2017.03.017
    [91] 李聪波,万腾,陈行政,等. 基于切削功率的数控车削批量加工刀具磨损在线监测[J]. 计算机集成制造系统,2018,24(8): 1910-1919. doi: 10.13196/j.cims.2018.08.003

    LI Congbo, WAN Teng, CHEN Xingzheng, et al. On-line monitoring method of tool wear for NC turning in batch processing based on cutting power[J]. Computer Integrated Manufacturing Systems, 2018, 24(8): 1910-1919. doi: 10.13196/j.cims.2018.08.003
    [92] 付细群,刘俊,熊文亮. 基于HHT算法和功率信号的刀具磨损预测[J]. 机械工程与自动化,2019(5): 159-161. doi: 10.3969/j.issn.1672-6413.2019.05.063

    FU Xiqun, LIU Jun, XIONG Wenliang. Tool wear prediction based on HHT algorithm and power signal[J]. Mechanical Engineering and Automation, 2019(5): 159-161. doi: 10.3969/j.issn.1672-6413.2019.05.063
    [93] 朱广文,魏代善,孙佳隆,等. 基于功率监测的刀具磨损状态识别[J]. 电子制作,2020(22): 28-29. doi: 10.3969/j.issn.1006-5059.2020.22.010

    ZHU Guangwen, WEI Daishan, SUN Jialong, et al. Tool Wear State Recognition Based on Power Monitoring[J]. Electronic Production, 2020(22): 28-29. doi: 10.3969/j.issn.1006-5059.2020.22.010
    [94] 张坤鹏. 基于功率信号的转子轮槽铣削在线监控研究[J]. 热力透平,2017,46(1): 52-55. doi: 10.13707/j.cnki.31-1922/th.2017.01.012

    ZHANG Kunpeng. Online monitoring system for the rotor groove milling based on power signal[J]. Thermal Turbine, 2017, 46(1): 52-55. doi: 10.13707/j.cnki.31-1922/th.2017.01.012
    [95] 万文波,李江雄,毕运波. 基于功率信号的钻锪刀具监测及其系统开发[J]. 计算机集成制造系统,2019,25(9): 2140-2148. doi: 10.13196/j.cims.2019.09.002

    WAN Wenbo, LI Jiangxiong, BI Yunbo. Drilling and dimpling tool monitoring based on power signal and its system development[J]. Computer Integrated Manufacturing Systems, 2019, 25(9): 2140-2148. doi: 10.13196/j.cims.2019.09.002
    [96] 桂宇飞,官威,陈标,等. 基于HHT算法与主轴功率信号的刀具磨损状态在线监测[J]. 机械设计与研究,2019,35(5): 63-69. doi: 10.13952/j.cnki.jofmdr.2019.0277

    GUI Yufei, GUAN Wei, CHEN Biao, et al. Online tool condition monitoring based on Hilbert-Huang transform and spidle power signal[J]. Machine Design and Research, 2019, 35(5): 63-69. doi: 10.13952/j.cnki.jofmdr.2019.0277
    [97] 乔石,刘阔,都书博,等. 基于功率信息的航空发动机叶片铣削刀具监测试验研究[J]. 航空制造技术,2021,64(16): 87-92,110. doi: 10.16080/j.issn1671-833x.2021.16.087

    QIAO Shi, LIU Kuo, DU Shubo, et al. Research on monitoring test of milling tool for aero-engine blade based on power information[J]. Aeronautical Manufacturing Technology, 2021, 64(16): 87-92,110. doi: 10.16080/j.issn1671-833x.2021.16.087
    [98] 王欣,强云玥. 铣刀在铣削加工中破损特征的识别方法研究[J]. 农业装备与车辆工程,2018,56(10): 65-70. doi: 10.3969/j.issn.1673-3142.2018.10.017

    WANG Xin, QIANG Yunyue. Identification method for milling cutter breakage features in milling process[J]. Agricultural Equipment and Vehicle Engineering, 2018, 56(10): 65-70. doi: 10.3969/j.issn.1673-3142.2018.10.017
    [99] 李宏坤,张孟哲,郝佰田,等. 基于切削电流系数的铣刀磨损状态监测[J]. 振动测试与诊断,2019,39(4): 713-719,900.

    LI Hongkun, ZHANG Mengzhe, HAO Baitian, et al. Monitoring milling cutter wear condition based on cutting current coefficients[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(4): 713-719,900.
    [100] 李宏坤,郝佰田,代月帮,等. 基于压缩感知和加噪堆栈稀疏自编码器的铣刀磨损程度识别方法研究[J]. 机械工程学报,2019,55(14): 1-10. doi: 10.3901/JME.2019.14.001

    LI Hongkun, HAO Baitian, DAI Yuebang, et al. Wear status recognition for milling cutter based on compressed sensing and noise stacking sparse auto-encoder[J]. Journal of Mechanical Engineering, 2019, 55(14): 1-10. doi: 10.3901/JME.2019.14.001
    [101] OU J Y, LI H K, HUANG G J, et al. A novel order analysis and stacked sparse auto-encoder feature learning method for milling tool wear condition monitoring[J]. Sensors (Basel, Switzerland), 2020, 20(10): 2878-2891. doi: 10.3390/s20102878
    [102] SONG K Y, WANG M, LIU L M, et al. Intelligent recognition of milling cutter wear state with cutting parameter independence based on deep learning of spindle current clutter signal[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(3/4): 929-942.
    [103] 李斌,丁玉发,刘红奇. 小波包分析技术在电流刀具磨损监测系统中的应用[J]. 心智与计算,2010,4(4): 258-264. doi: 10.13706/j.cnki.xizh.2010.04.001

    LI Bin, DING Yufa, LIU Hongqi. Application of wavelet package analysis in tool wear monitoring system using current[J]. Mind and Computation, 2010, 4(4): 258-264. doi: 10.13706/j.cnki.xizh.2010.04.001
    [104] 乔培平. 基于电流信号刀具磨损状态的模糊模式识别[J]. 工具技术,2013,47(11): 73-74. doi: 10.3969/j.issn.1000-7008.2013.11.022

    QIAO Peiping. Tool wear state based on current signal of fuzzy pattern recongnition[J]. Tool Engineering, 2013, 47(11): 73-74. doi: 10.3969/j.issn.1000-7008.2013.11.022
    [105] KHAJAVI M N, NASERNIA E, ROSTAGHI M. Milling tool wear diagnosis by feed motor current signal using an artificial neural network[J]. Journal of Mechanical Science and Technology, 2016, 30(11): 4869-4875. doi: 10.1007/s12206-016-1005-9
    [106] 唐军,赵波,李文星. 基于遗传算法和BP神经网络的盘形成形铣刀磨损状态预测[J]. 河南理工大学学报(自然科学版),2017,36(5): 66-71. doi: 10.16186/j.cnki.1673-9787.2017.05.011

    TANG Jun, ZHAO Bo, LI Wenxing. Research on prediction tool of wear conditions of disk milling cutter based on genetic algorithm and BP neural network[J]. Journal of Henan Polytechnic University (Natural Science), 2017, 36(5): 66-71. doi: 10.16186/j.cnki.1673-9787.2017.05.011
    [107] TANG J, LI W X, ZHAO B. The application of GA-BP algorithm in prediction of tool wear state[J]. IOP Conference Series: Materials Science and Engineering, 2018, 398: 012025.1-012025.8.
    [108] 孙巍伟,黄民,李康. 基于电流信号的刀具磨损状态监测方法研究[J]. 河南理工大学学报(自然科学版),2019,38(6): 77-84,107. doi: 10.16186/j.cnki.1673-9787.2019.6.11

    SUN Weiwei, HUANG Min, LI Kang. Research on tool condition monitoring method based on current signal[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(6): 77-84,107. doi: 10.16186/j.cnki.1673-9787.2019.6.11
    [109] 张小翠,徐小明. 一种基于变频器电流检测机床刀具磨损新方法的研究[J]. 机床与液压,2019,47(13): 213-218. doi: 10.3969/j.issn.1001-3881.2019.13.043

    ZHANG Xiaocui, XU Xiaoming. Research on new method of tool wear for machine tool based on frequency converter current detection[J]. Machine Tool and Hydraulics, 2019, 47(13): 213-218. doi: 10.3969/j.issn.1001-3881.2019.13.043
    [110] ZHOU Y Q, SUN W F. Tool wear condition monitoring in milling process based on current sensors[J]. IEEE Access, 2020, 8: 95491-95502.
    [111] 王民,刘利明,宋铠钰,等. 基于主轴驱动电流杂波的立铣刀复杂工况下磨损状态辨识[J]. 计算机集成制造系统,2021,27(12): 3429-3438. doi: 10.13196/j.cims.2021.12.005

    WANG Min, LIU Liming, SONG Kaiyu, et al. Wear status identification of end milling cutter under complex cutting conditions based on clutter signal of spindle current[J]. Computer Integrated Manufacturing Systems, 2021, 27(12): 3429-3438. doi: 10.13196/j.cims.2021.12.005
    [112] OU J Y, LI H K, HUANG G J. Intelligent analysis of tool wear state using stacked denoising autoencoder with online sequential-extreme learning machine[J]. Measurement, 2021, 167: 108153.1-108153.14.
    [113] VASHISHT R K, PENG Q J. Online chatter detection for milling operations using LSTM neural networks assisted by motor current signals of ball screw drives[J]. Journal of Manufacturing Science and Engineering, 2021, 143(1): 011008.1-011008.13.
    [114] HESSAINIA Z, BELBAH A, YALLESE M A. On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations[J]. Measurement: Journal of the International Measurement Confederation, 2013, 46(5): 1671-1681. doi: 10.1016/j.measurement.2012.12.016
    [115] UPADHYAY V, JAIN P K, MEHTA N K. In-process prediction of surface roughness in turning of Ti-6Al-4V alloy using cutting parameters and vibration signals[J]. Measurement, 2013, 46(1): 154-160. doi: 10.1016/j.measurement.2012.06.002
    [116] SALGADO D R, ALONSO F J, CAMBERO I, et al. In-process surface roughness prediction system using cutting vibrations in turning[J]. The International Journal of Advanced Manufacturing Technology, 2009, 43(1/2): 40-51.
    [117] GARCÍA PLAZA E, NÚÑEZ P J, RODRÍGUEZ SALGADO D, et al. Contribution of surface finish monitoring signals in CNC taper turning[J]. Materials Science Forum, 2014, 797: 41-46. doi: 10.4028/www.scientific.net/MSF.797.41
    [118] KIRBY E D, CHEN J C. Development of a fuzzy-nets-based surface roughness prediction system in turning operations[J]. Computers and Industrial Engineering, 2007, 53(1): 30-42. doi: 10.1016/j.cie.2006.06.018
    [119] RISBOOD K A. Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process[J]. Journal of Materials Processing Technology, 2003, 132(1/2/3): 203-214.
    [120] PLAZA E G, NÚÑEZ L P J. Surface roughness monitoring by singular spectrum analysis of vibration signals[J]. Mechanical Systems and Signal Processing, 2017, 84: 516-530. doi: 10.1016/j.ymssp.2016.06.039
    [121] SHI D F, GINDY N N. Tool wear predictive model based on least squares support vector machines[J]. Mechanical Systems and Signal Processing, 2007, 21(4): 1799-1814. doi: 10.1016/j.ymssp.2006.07.016
    [122] BHUIYAN M S H, CHOUDHURY I A, DAHARI M. Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning[J]. Journal of Manufacturing Systems, 2014, 33(4): 476-487. doi: 10.1016/j.jmsy.2014.04.005
    [123] WANG H, TO S, CHAN C Y. Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2013, 69: 20-29. doi: 10.1016/j.ijmachtools.2013.02.006
    [124] MARINESCU I, AXINTE D. A time-frequency acoustic emission-based monitoring technique to identify workpiece surface malfunctions in milling with multiple teeth cutting simultaneously[J]. International Journal of Machine Tools and Manufacture, 2009, 49(1): 53-65. doi: 10.1016/j.ijmachtools.2008.08.002
    [125] REHORN A G, SEJDIĆ E, JIANG J. Fault diagnosis in machine tools using selective regional correlation[J]. Mechanical Systems and Signal Processing, 2006, 20(5): 1221-1238. doi: 10.1016/j.ymssp.2005.01.010
    [126] ZHU K P, WONG Y S, HONG G S. Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results[J]. International Journal of Machine Tools and Manufacture, 2009, 49(7/8): 537-553.
    [127] LIN S C. A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning[J]. International Journal of Machine Tools and Manufacture, 1998, 38(7): 763-782. doi: 10.1016/S0890-6955(97)00073-4
    [128] CHEUNG C F. A multi-spectrum analysis of surface roughness formation in ultra-precision machining[J]. Precision Engineering, 2000, 24(1): 77-87. doi: 10.1016/S0141-6359(99)00033-1
    [129] ABOUELATTA O B. Surface roughness prediction based on cutting parameters and tool vibrations in turning operations[J]. Journal of Materials Processing Technology, 2001, 118(1/2/3): 269-277.
    [130] ZHANG S J. A theoretical and experimental investigation into multimode tool vibration with surface generation in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2013, 72: 32-36. doi: 10.1016/j.ijmachtools.2013.05.005
    [131] SHORE P, MORANTZ P, LUO X, et al. Big OptiX ultra precision grinding/measuring system[C]//Optical Systems Design 2005. Proc SPIE 5965, Optical Fabrication, Testing, and Metrology Ⅱ, Jena: [s.n.], 2005, 5965: 241-248.
    [132] FU S Y, MURALIKRISHNAN B, RAJA J. Engineering surface analysis with different wavelet bases[J]. Journal of Manufacturing Science and Engineering, 2003, 125(4): 844-852. doi: 10.1115/1.1616947
    [133] ABU-MAHFOUZ I, EL ARISS O, ESFAKUR RAHMAN A H M, et al. Surface roughness prediction as a classification problem using support vector machine[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1/2/3/4): 803-815.
  • 期刊类型引用(0)

    其他类型引用(1)

  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1019
  • HTML全文浏览量:  271
  • PDF下载量:  110
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-10-11
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2022-10-13

目录

/

返回文章
返回