• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于不等磁路面积设计方法的磁轴承刚度

胡余生 李立毅 郭伟林 李欣

胡余生, 李立毅, 郭伟林, 李欣. 基于不等磁路面积设计方法的磁轴承刚度[J]. 西南交通大学学报, 2022, 57(3): 648-656. doi: 10.3969/j.issn.0258-2724.20210888
引用本文: 胡余生, 李立毅, 郭伟林, 李欣. 基于不等磁路面积设计方法的磁轴承刚度[J]. 西南交通大学学报, 2022, 57(3): 648-656. doi: 10.3969/j.issn.0258-2724.20210888
HU Yusheng, LI Liyi, GUO Weilin, LI Xin. Support Stiffness of Magnetic Bearing Based on Unequal Magnetic Circuit Area Design Method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656. doi: 10.3969/j.issn.0258-2724.20210888
Citation: HU Yusheng, LI Liyi, GUO Weilin, LI Xin. Support Stiffness of Magnetic Bearing Based on Unequal Magnetic Circuit Area Design Method[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 648-656. doi: 10.3969/j.issn.0258-2724.20210888

基于不等磁路面积设计方法的磁轴承刚度

doi: 10.3969/j.issn.0258-2724.20210888
详细信息
    作者简介:

    胡余生(1978—),男,高级工程师(教授级),博士研究生,研究方向为磁悬浮制冷离心压缩机,E-mail:dewtutg@163.com

    通讯作者:

    李立毅(1969—),男,教授,博士生导师,研究方向为特种电机,E-mail:gldqhys@163.com

  • 中图分类号: TH133.3

Support Stiffness of Magnetic Bearing Based on Unequal Magnetic Circuit Area Design Method

  • 摘要:

    磁悬浮转子需同时满足抗干扰与共振隔离需求,为了从磁悬浮轴承结构角度奠定设计基础,基于磁悬浮轴承结构参数对支承刚度的影响,对高刚度磁悬浮轴承设计方法展开研究. 首先,通过磁悬浮轴承刚度解析式推导,分析磁悬浮轴承结构参数对支承刚度的影响因素,确定支承刚度优化方向;其次,提出高刚度磁悬浮轴承设计方法,分析支承刚度的优化效果;最后,通过转子固有频率测试及压缩机升频实验,验证所提出方法的可行性. 结果表明:在压缩机样机中,磁悬浮轴承采用不等磁路面积结构,在齿轭宽度比为1.2时,可使轴承在最恶劣工况,即对应最大控制电流时,支承刚度较常规等磁路面积结构提高了25%,压缩机在工况运行区间有效避免共振,为工程应用中磁悬浮轴承刚度优化设计提供参考.

     

  • 图 1  磁力轴承出力模型

    Figure 1.  Capacity model of magnetic bearing

    图 2  四自由度磁悬浮转子系统

    Figure 2.  Magnetic suspension rotor system with 4 degree-of-freedom

    图 3  支承刚度随磁极的变化

    Figure 3.  Relationship between support stiffness and number of poles

    图 4  支承刚度随气隙的变化

    Figure 4.  Relationship between support stiffness and air gap

    图 5  支承刚度随匝数的变化

    Figure 5.  Relationship between support stiffness and number of turns

    图 6  支承刚度随磁极面积的变化

    Figure 6.  Relationship between support stiffness and magnetic pole area

    图 7  等磁路面积结构下磁力线分布

    Figure 7.  Distribution of magnetic force line with equal magnetic circuit area structure

    图 8  支承刚度设计方法

    Figure 8.  Design method for magnetic bearing stiffness

    图 9  不同控制电流下的磁密分布

    Figure 9.  Distribution of magnetic flux density with different control currents

    图 10  x = 0,ib = 0时轴承刚度与齿轭宽度比关系

    Figure 10.  Relationship between stiffness and the width ratio of tooth to yoke with x = 0,ib = 0

    图 11  x = 0,ib = 4 A时轴承刚度与齿轭宽度比关系

    Figure 11.  Relationship between stiffness and the width ratio of tooth to yoke with x = 0,ib = 4 A

    图 12  转子结构及加速度传感器布置示意

    Figure 12.  Magnetic suspension centrifuge rotor and position of acceleration sensor

    图 13  转子升频过程轴承位移曲线

    Figure 13.  Displacement curves of bearing in the process of frequency rise

  • [1] XU Y P, SHEN Q, ZHANG Y, et al. Dynamic modeling of the active magnetic bearing system operating in base motion condition[J]. IEEE Access, 2020, 8: 166003-166013. doi: 10.1109/ACCESS.2020.3022996
    [2] KIM C S, JUNG H H, PARK B K. A study on the optimal design for a magnetic bearing-rotor with maximum stiffness using a genetic algorithm[J]. Journal of the Korean Society of Manufacturing Process Engineers, 2013, 12(6): 167-174. doi: 10.14775/ksmpe.2013.12.6.167
    [3] YANG G J, XU Y, SHI Z G, et al. Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT[J]. Nuclear Engineering and Design, 2007, 237(12/13): 1363-1371.
    [4] JUNG H H, KANG S H, CHO B H, et al. A design technique for a magnetic bearing-rotor in a turbo blower considering critical speeds[J]. Advanced Materials Research, 2012, 569: 564-567. doi: 10.4028/www.scientific.net/AMR.569.564
    [5] FUJIWARA H, YANAGIHARA K, MATSUSHITA O, et al. Design of active magnetic bearing rotors and their control method for passing through fourth bending critical speed[J]. Mechanical Engineering Journal, 2019, 6(3): 00481.1-00481.11.
    [6] 任正义,朱健国,杨立平. 基于ANSYS Workbench的飞轮转子临界转速计算分析[J]. 机械工程师,2019(9): 23-24,27.

    REN Zhengyi, ZHU Jianguo, YANG Liping. Calculation and analysis on critical speed of flywheel rotor based on ANSYS workbench[J]. Mechanical Engineer, 2019(9): 23-24,27.
    [7] 蒋启龙,胡振球. 轴向主动磁轴承的改进不完全微分PID控制[J]. 西南交通大学学报,2015,50(2): 241-246. doi: 10.3969/j.issn.0258-2724.2015.02.006

    JIANG Qilong, HU Zhenqiu. Improved incomplete derivative PID control of axial active magnetic bearing[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 241-246. doi: 10.3969/j.issn.0258-2724.2015.02.006
    [8] 黎松奇,张昆仑. 单磁铁悬浮系统自激振动的稳定性分析及抑制[J]. 西南交通大学学报,2015,50(3): 410-416. doi: 10.3969/j.issn.0258-2724.2015.03.004

    LI Songqi, ZHANG Kunlun. Self-excited vibration of single-magnet suspension system: stability analysis and inhibition[J]. Journal of Southwest Jiaotong University, 2015, 50(3): 410-416. doi: 10.3969/j.issn.0258-2724.2015.03.004
    [9] CHITTLANGIA V, LIJESH K P, AKASH K, et al. Optimum design of an active magnetic bearing considering the geometric constraints[J]. Technology Letters, 2014, 1(3): 23-30.
    [10] LIJESH K P, HIRANI H. Optimization of eight pole radial active magnetic bearing[J]. Journal of Tribology, 2015, 137(2): 024502.1-024502.7.
    [11] 周瑾,高天宇,董继勇,等. 基于Isight的径向磁悬浮轴承结构优化设计[J]. 轴承,2018(7): 6-11.

    ZHOU Jin, GAO Tianyu, DONG Jiyong, et al. Optimal design for structure of radial magnetic bearings based on isight[J]. Bearing, 2018(7): 6-11.
    [12] KANG K, PALAZZOLO A. Homopolar magnetic bearing saturation effects on rotating machinery vibration[J]. IEEE Transactions on Magnetics, 2012, 48(6): 1984-1994. doi: 10.1109/TMAG.2012.2182776
    [13] GERAMI A, ALLAIRE P, FITTRO R. Control of magnetic bearing with material saturation nonlinearity[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(6): 061002.1-061002.10.
  • 加载中
图(13)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  86
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2022-04-11
  • 刊出日期:  2022-05-17

目录

    /

    返回文章
    返回