• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

多孔沥青混合料的声学性能评价

李金凤 何兆益 孔林

李金凤, 何兆益, 孔林. 多孔沥青混合料的声学性能评价[J]. 西南交通大学学报, 2022, 57(1): 207-214. doi: 10.3969/j.issn.0258-2724.20210074
引用本文: 李金凤, 何兆益, 孔林. 多孔沥青混合料的声学性能评价[J]. 西南交通大学学报, 2022, 57(1): 207-214. doi: 10.3969/j.issn.0258-2724.20210074
LI Jinfeng, HE Zhaoyi, KONG Lin. Evaluation of Acoustic Performance of Porous Asphalt Concrete[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 207-214. doi: 10.3969/j.issn.0258-2724.20210074
Citation: LI Jinfeng, HE Zhaoyi, KONG Lin. Evaluation of Acoustic Performance of Porous Asphalt Concrete[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 207-214. doi: 10.3969/j.issn.0258-2724.20210074

多孔沥青混合料的声学性能评价

doi: 10.3969/j.issn.0258-2724.20210074
基金项目: 国家自然科学基金(51978116);交通运输部行业重点科技项目(2018-TG-003)
详细信息
    作者简介:

    李金凤(1986—),女,博士研究生,研究方向为道路工程,E-mail:511417058@qq.com

  • 中图分类号: U416

Evaluation of Acoustic Performance of Porous Asphalt Concrete

  • 摘要:

    多孔沥青混合料的吸声性能对降低轮胎/路面噪声有重要影响,为此采用驻波管按1/3倍频对多孔沥青混合料(PAC)、沥青玛蹄脂碎石(SMA-13)和密级配沥青混合料(AC-13)的吸声频谱进行了测试,研究分析了级配类型、空隙率、试件厚度及表面纹理构造对混合料吸声性能的影响. 试验结果表明:PAC混合料的空隙率较大,其吸声频谱随频率呈先升后降的变化趋势,吸声性能远好于SMA-13和AC-13,并给出了吸声系数随连通空隙率的线性表达式;PAC的空隙率越高,公称最大粒径越大,平均吸声系数和峰值吸声系数均越大(降噪性能越好),吸声频谱的峰值频率越高;随着试件厚度减小,PAC的峰值吸声系数有所增大,吸声频谱峰值逐渐向高频方向移动,但平均吸声系数逐渐减小;SMA-13相比AC-13的平均吸声系数略大,同一PAC混合料试件的糙面接受声波相比光面接受声波时的平均吸声系数大13.9%,表面纹理构造也是影响PAC混合料吸声性能的重要因素. 空隙率、公称最大粒径和厚度的增加均有利于PAC混合料吸声性能提升,前两者更有益于吸收高频噪声,后者则有益于吸收低频噪声.

     

  • 图 1  不同沥青混合料车辙板钻心后的试件

    Figure 1.  Core drilling specimens of different asphalt concrete

    图 2  吸声系数测试装置

    Figure 2.  Test instrument for sound absorption coefficient

    图 3  同一级配沥青混合料不同试件的吸声系数

    Figure 3.  Sound absorption coefficient of different specimens of the same gradation asphalt concrete

    图 4  级配类型和空隙率对吸声系数的影响

    Figure 4.  Effect of gradation type and porosity on sound absorption coefficient spectra

    图 5  最大公称粒径对吸声系数的影响

    Figure 5.  Effect of maximum nominal particle size on sound absorption coefficient spectra

    图 6  沥青混合料吸声系数随连通空隙率的变化关系

    Figure 6.  Relationship between sound absorption coefficient of asphalt concrete and connected porosity

    图 7  试件厚度对吸声系数的影响

    Figure 7.  Effect of specimen thickness on sound absorption coefficient spectra

    图 8  表面纹理接收入射声波的情况

    Figure 8.  Condition of specimen surface texture receiving incident sound wave

    图 9  表面纹理对吸声系数的影响

    Figure 9.  Effect of specimen surface texture on sound absorption coefficient spectra

    图 10  不同级配沥青混合料的降噪水平

    Figure 10.  Noise reduction level of asphalt concrete with different gradations

    表  1  不同沥青混合料的级配组成

    Table  1.   Gradation composition of different asphalt concrete %

    试件编号通过筛孔(mm)的质量百分比油石比空隙率
    连通空隙率
    19.00016.00013.2009.5004.7502.3601.1800.6000.3000.1500.075
    PAC-16 100.0 94.5 82.0 51.0 20.5 16.0 12.5 10.0 7.5 5.5 4.0 4.7 19.5 13.2
    PAC-13a 100.0 100.0 95.0 69.0 26.5 20.5 15.5 11.0 8.0 6.0 4.0 4.8 16.7 8.9
    PAC-13b 100.0 100.0 90.5 63.0 19.5 14.0 12.5 9.0 7.0 5.5 4.0 4.8 20.0 12.6
    PAC-13c 100.0 100.0 86.0 52.0 15.5 13.0 10.5 8.0 6.0 5.0 4.0 4.7 23.1 17.3
    PAC-10 100.0 100.0 100.0 90.0 39.0 13.0 9.0 7.0 6.0 5.0 4.0 4.9 19.8 10.1
    PAC-5 100.0 100.0 100.0 100.0 88.0 30.0 18.0 12.0 9.0 7.0 5.0 5.1 19.4 8.2
    SMA-13 100.0 100.0 95.0 62.5 27.0 20.5 19.0 16.0 13.0 12.0 10.0 6.1 3.9 0.6
    AC-13 100.0 100.0 95.0 76.5 53.0 37.0 26.5 19.0 13.5 10.0 6.0 4.6 4.2 0.7
    下载: 导出CSV

    表  2  不同厚度下沥青混合料试样的平均吸声系数

    Table  2.   Average sound absorption coefficient of asphalt concrete samples with different thicknesses

    试样厚度 厚度≈5.3 cm 厚度≈4.1 cm 厚度≈2.1 cm
    PAC-13b 0.2309 0.2101 0.1836
    PAC-10 0.2018 0.1909 0.1718
    PAC-5 0.1973 0.1855 0.1691
    下载: 导出CSV
  • [1] KIM D R. Burden of disease from environmental noise[R]. Copenhague (Dinamarca): World Health Organization Regional Office for Europe, 2011.
    [2] DAMIAN C, FOSALAU C. Sources of indoor noise and options to minimize adverse human health effect[J]. Engineering and Management Journal, 2011, 10(3): 393-400.
    [3] SYGNA K, AASVANG GM, AAMODT G, et al. Road traffic noise,sleep and mental health[J]. Environmental Research, 2014, 131: 17-24. doi: 10.1016/j.envres.2014.02.010
    [4] FREITAS E F. The effect of time on the contribution of asphalt rubber mixtures to noise abatement[J]. Noise Control Engineering Journal, 2012, 60(1): 1-8. doi: 10.3397/1.3676311
    [5] SANDBERG U, EJSMONT J A. Tyre/road noise reference book[M]. Sweden: [s.n.], 2002.
    [6] WINROTH J, KROPP W, HOEVER G, et al. Investigating generation mechanisms of tyre/road noise by speed exponent analysis[J]. Applied Acoustics, 2017, 115: 101-108. doi: 10.1016/j.apacoust.2016.08.027
    [7] LIU M, HUANG X, XUE G. Effects of double layer porous asphalt pavement of urban streets on noise reduction[J]. International Journal of Sustainable Built Environment, 2016, 5: 183-196. doi: 10.1016/j.ijsbe.2016.02.001
    [8] GARDZIEJCZYK W, JASKULA P, EJSMONT J A, et al. Investigation of acoustic properties of poroelastic asphalt mixtures in laboratory and field conditions[J]. Materials, 2021, 14: 2649. doi: 10.3390/ma14102649
    [9] CHU L, FWA T F, TAN K H. Eveluation of wearing course mix designs on sound absorption improvement of porous asphalt pavement[J]. Construction and Building Materials, 2017, 141: 402-409. doi: 10.1016/j.conbuildmat.2017.03.027
    [10] KIM S K, PARK W J, LEE K H. Noise reduction capacity of a composite pavement system[J]. KSCE Journal of Civil Engineering, 2014, 18(6): 1664-1671. doi: 10.1007/s12205-014-0594-z
    [11] LIAO G, SAKHAEIFAR M S, HEITZMAN M, et al. The effects of pavement surface characteristics on tire/pavement noise[J]. Applied Acoustics, 2014, 76: 14-23. doi: 10.1016/j.apacoust.2013.07.012
    [12] KRIVANEK V, PAVKOVA A, TOGEL M, et al. Cleaning low-noise surface as a basic condition for improving pavement’s axoustic absorption capability[J]. Arabian Journal for Science and Engineering, 2016, 41(2): 425-431. doi: 10.1007/s13369-015-1713-y
    [13] 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 3版. 南京: 南京大学出版社, 2015: 131-150.
    [14] 王辉,董欣雨,邓乔,等. 沥青混合料吸声性能[J]. 建筑材料学报,2018,21(4): 634-638. doi: 10.3969/j.issn.1007-9629.2018.04.017

    WANG Hui, DONG Xinyu, DENG Qiao, et al. Sound absorption performance of asphalt mixutre[J]. Journal of Building Materials, 2018, 21(4): 634-638. doi: 10.3969/j.issn.1007-9629.2018.04.017
    [15] 中国科学院声学研究所, 中国建筑科学院建筑物理研究所. 声学阻抗管中吸声系数和声阻抗的测量: GB/T 18696.1—2004 [S]. 北京: 中国国家标准化管理委员会, 2004.
    [16] VAITKUS A, RNDRIEJAUSKAS T, VOROBJOVAS V, et al. Asphalt waering course optimization for road traffic noise reduction[J]. Construction and Building Materials, 2017, 152: 345-356. doi: 10.1016/j.conbuildmat.2017.06.130
    [17] 王岚,唐宝利,邢永明. 大孔隙胶粉改性沥青混合料吸声特性试验研究[J]. 工程力学,2009,26(增刊1): 181-184.

    WANG Lan, TANG Baoli, XING Yongming. Experimental study on sound absorption of crumb rubber modified asphalt mixture with large porosity[J]. Engineering Mechnics, 2009, 26(S1): 181-184.
    [18] GARDZIEJCZYK W. The effect of time on acoustic durability of low noise pavements-the case studies in Poland[J]. Transportation Research Part D: Transport and Environment, 2016, 44: 93-104. doi: 10.1016/j.trd.2016.02.006
    [19] 交通运输部公路科学研究院. 公路工程沥青及沥青混合料试验规程: JTG E20-2011 [S]. 北京: 中华人民共和国交通运输部, 2011.
    [20] 交通运输部公路科学研究院. 公路沥青路面施工技术规范: JTG F40-2004 [S]. 北京: 中华人民共和国交通运输部, 2004.
    [21] KNABBEN R M, TRICHES G, GERGES S N Y, et al. Evaluation of sound absorption capacity of asphalt mixtures[J]. Applied Acoustics, 2016, 114: 266-274.
    [22] BURATTI C, MORETTI E. Traffic noise pollution: spectra characteristics and windows sound insulation in laboratory and field measurements[J]. Journal of Environmental Science and Engineering, 2010, 4(12): 28-36.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  308
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-08-26
  • 网络出版日期:  2021-11-22
  • 刊出日期:  2021-10-21

目录

    /

    返回文章
    返回