Fatigue Characteristic of High-Frequency Vibration for CRTS Ⅱ Track Slab
-
摘要:
列车轮载作用会引发轨道板的高频自振效应. 为分析高频荷载下CRTS Ⅱ型轨道板的疲劳特性以及板体自振效应对疲劳寿命的影响程度,基于现有的疲劳损伤准则,探究轮对作用间隙阶段轨道板自振影响下的疲劳特性. 对脱空长度影响下轨道板的疲劳寿命进行预测,并与仅考虑荷载作用次数的结果进行对比. 结果表明:轨道结构完好时,列车轮载引发轨道板伤损的可能性较小;若列车行车速度为360 km/h,列车轮载在引发轨道板共振前即发生板底开裂;轨道结构完好时,列车轮载引发的板体自振效应对轨道板疲劳损伤影响程度最大,此时列车轮载对轨道板产生约1.8倍的疲劳荷载当量;当轨道板脱空长度大于2.0倍枕距后,可忽略板体自振对疲劳损伤的影响;轨道板的脱空长度大于3.2倍枕距后,现场无砟轨道难以维持60 a的使用寿命.
-
关键词:
- 无砟轨道 /
- CRTS Ⅱ型轨道板 /
- 疲劳特性 /
- 板体自振 /
- 局部脱空
Abstract:The effect of the wheel load could cause the self-vibration effect of high frequency for the track slab. To analyze the fatigue characteristic of CRTS Ⅱ track slab under high-frequency load and the effect of the self-vibration of the track slab on its fatigue life, the fatigue characteristics of the track slab under the influence of this self-vibration during the interval in the wheelset was explored on the basis of existing fatigue damage criteria. The fatigue life of the track slab was predicted with reference to the effect of the de-bonding length, and the results obtained were compared with the results obtained when only the number of load actions was considered. Results show that, the possibility of damage to the track slab caused by the train wheel load is reduced when the track structure is intact. The bottom of the track slab would crack before resonance triggering occurred if the train speed was 360 km/h. When the track structure is intact, the self-vibration effect in the track slab caused by the wheel load has its greatest impact on the fatigue damage to the track slab, and the wheel load produces approximately 1.8 times the equivalent fatigue load to the track slab. The effect of the self-vibration effect in the track slab on the fatigue damage could be ignored when the slab de-bonding length is more than twice the distance between sleepers. When de-bonding length of the track slab is more than 3.2 times the distance between sleepers, it becomes difficult for the ballastless track on-site to maintain its expected 60-year service life.
-
CRTS Ⅱ型板式无砟轨道(以下简称“Ⅱ型板”)是我国高速铁路的主型轨道结构之一,无砟道床主要由轨道板、宽窄接缝、CA砂浆层、支承层等组成,轨道板通过纵向连接器及混凝土组成的结构实现连接,形成纵连式轨道[1]. 根据运营线路的现场调研,Ⅱ型板总体使用情况良好,但随着高速铁路运营时间的推移,受大规模施工作业、多变的下部基础和经时效应下的结构退化等因素限制,轨道结构不可避免地会产生局部伤损[2]. 无砟轨道结构的疲劳耐久性是保证其设计寿命的主要指标,根据当前高速铁路无砟轨道的设计理论与方法,采用混凝土设计规范对其疲劳特性和耐久性进行检算时,既有无砟轨道均满足要求[3]. 但无砟轨道在实际运营过程中出现了多种形式的疲劳损伤,尤其是在轨道的新老混凝土结合面,该现象更为普遍,如轨道板与砂浆层的层间脱连. 轨道板在列车轮载作用下呈上压下拉的受弯形态,因混凝土受拉压特性的差异性,轨道板的损伤多表现为由板底发展的裂缝[4]. 列车轮载的高频疲劳作用也会使结构内部损伤不断累积,导致刚度下降、变形增加,最终引发结构的损坏.
目前针对混凝土的疲劳损伤普遍采用Miner线性准则与S-N曲线作为评估方法,如宋玉普等[5-7]通过对混凝土多轴疲劳试验的分析,建立多种应力状态下混凝土疲劳的S-N曲线和疲劳破坏准则;Cornelissen等[8]通过修正混凝土的S-N曲线,论证了压应力对混凝土的抗拉疲劳破坏有负面影响;Dobromil等[9]通过将S-N曲线转化为材料损伤的方法,提出了一种适用于高周疲劳的混凝土裂缝损伤新模型. 传统的疲劳损伤判定法则仅考虑荷载幅值与次数的作用,未考虑荷载频率对损伤的影响. 列车轮载作用下无砟轨道混凝土结构应力幅值一般较低,但是荷载的循环次数很高,属于复杂应力状态下的高周疲劳问题[10],因此针对无砟轨道使用寿命预测方法应区别于普通混凝土结构的寿命预测.
针对无砟轨道的疲劳损伤问题,徐庆元等[11-12]对荷载组合作用下桥上纵连板式无砟轨道疲劳应力谱、疲劳寿命分析模型及疲劳破坏关键技术参数进行了研究;Poveda等[13]与Tarifa等[14]分别通过数值仿真与现场试验的方法,研究了框架式无砟轨道在列车时变荷载作用下的瞬态效应,通过分析应力幅值的影响,提出了针对框架式无砟轨道的疲劳准则;Konings[15]基于Miner线性疲劳损伤准则和钢筋混凝土S-N曲线,初步分析了服役期间复杂载荷下RHEDA 2000型无砟轨道的疲劳寿命;刘学毅等[16]通过对先张与后张Ⅲ型轨道板的疲劳试验,研究了轨道结构各部件位移及轨道板应力随环境温度及列车轮载疲劳作用次数的变化;童明娜等[17]针对Ⅱ型板潜在的疲劳失效模式,建立列车荷载与温度荷载共同作用下轨道板混凝土疲劳功能函数,开展了基于时变可靠度理论的疲劳时变可靠性研究. Chapeleau等[18]开展了无砟轨道实尺模型试验,通过测量轨道板内疲劳应变,探索了板中裂纹的扩展规律.
上述研究主要通过数值仿真与现场试验的方法,关注了无砟轨道结构整体的疲劳特性,并初步探索了损伤发展机理,但针对列车高频轮载作用下无砟轨道疲劳特性的研究尚需深入. 特别是在轮对作用间隙阶段,列车高频轮载会引发板体的自振效应,轨道结构会产生微小的高频振动,针对该阶段振动对轨道结构疲劳特性的影响,目前鲜有系统的研究. 故深入探讨列车高频荷载下轨道板的疲劳特性以及轨道板自振效应对疲劳寿命的影响程度,对预防无砟轨道进入故障高发期、保证列车的安全高效运行具有重大的现实意义.
1. 计算模型与参数
建立如图1所示的分析模型研究局部脱空下轨道板的疲劳特性,相应的有限元模型局部如图2所示,并作如下基本假定:
1) 钢轨、轨道板简化为均质的连续弹性支承欧拉梁;
2) 扣件简化为线弹性点支承;砂浆层简化为均布的弹性支承,忽略轨道板脱空处砂浆层的支承作用;
3) 忽略支承层及其他轨道附属结构对轨道板振动的影响.
图2有限元模型采用欧拉梁单元模拟轨道板、钢轨,为消除边界效应建立共计16块板长(约100 m),并选取模型中部轨道板作为分析对象;扣件采用线弹性的离散弹簧单元模拟;轨道板支承段与底座板之间的砂浆层约束简化为均布的线弹性约束. 列车轮载模式是计算疲劳效应的基础,以移动恒载模拟列车轮载作用,并通过瞬态分析方法获取轨道板的受力形态. 以京沪高速铁路为研究背景,按照京沪线上的主要车型CRH380建立典型车辆模型[19],模拟两个车辆,共计4个转向架、8个轮对以360 km/h的速度顺序通过钢轨,其中列车轴重为170 kN. 模型主要参数如表1所示[1,2].
表 1 主要计算参数Table 1. Main calculation parameters部件 项目 取值 钢轨 弹性模量/Pa 2.06 × 1011 惯性矩/m4 7.745 × 10−3 密度/(kg•m−3) 7850 泊松比 0.30 扣件刚度/(N•m−1) 6.0 × 107 轨道板 弹性模量/Pa 3.55 × 1010 密度/(kg•m−3) 2400 泊松比 0.20 宽度(厚度)/m 2.55 (0.20) CA砂浆 弹性模量/Pa 7.0 × 109 厚度/m 0.03 单向受压刚度/(N•m−2) 5.95 × 1011 2. 轨道板振动力学特性分析
2.1 振动受力分析
受温度、水及列车动荷载等多场耦合荷载共同影响,砂浆层与轨道板间的粘结状态在线路运营后将极大减弱,板底部属于受力的薄弱部位,因此有必要关注轨道板在列车移动荷载作用下板底的受力形态. 为探究轨道板在列车移动荷载作用下的受力特性,假定脱空长度为L0,轨枕间距为La,以L0 = 0,2.0 La,5.0 La为例,分析轨道板在列车移动荷载作用下的弯矩时程分布规律,结果如图3所示.
图3表明,轨道板弯矩在轮对行驶于分析点正上方时达到最大值. L0 = 0时,轨道板承受弯矩较小,弯矩量值为0.505 kN•m,此时板底拉应力为0.03 MPa,远小于Ⅱ型板C55混凝土的抗拉强度2.74 MPa,因此在轨道结构完好的条件下,列车轮载引发轨道板伤损的可能性较小. L0 = 2.0 La,5.0 La时,弯矩量值分别为9.66、32.2 kN•m,根据受弯梁的正应力计算方法可得板底拉应力分别为0.56、1.89 MPa,初步计算表明,当L0 = 6.2 La时,轨道板在单次轮对荷载作用下即达到轨道板的抗拉强度极限.
根据列车移动荷载分布特性,轨道板振动弯矩大致可分为5个阶段(见图3):列车行驶于分析点前的阶段(阶段O)、第1车辆前转向架作用阶段(阶段Ⅰ)、同一车辆的前后2个转向架作用间隙阶段(阶段Ⅱ)、相邻车辆的2个转向架共同作用阶段(阶段Ⅲ)、列车行驶于分析点后的阶段(阶段A). 图3表明,不同时间点相同阶段的振动弯矩时程分布基本相同(如图3中2个阶段Ⅰ与2个阶段Ⅱ),阶段O、Ⅱ、A的弯矩时程变化规律相近,阶段Ⅲ大致相当于2个阶段Ⅰ的作用效果. 以16车编组的CRH380列车为例,当1列车经过分析点时,轨道板弯矩时程曲线将经历共计1组阶段O、2组阶段Ⅰ、16组阶段Ⅱ、15组阶段Ⅲ、1组阶段A. 此外,在列车行驶于分析点前后(阶段O、A)以及2个转向架之间的阶段(阶段Ⅱ),因列车轮载引发了板体的自振效应,轨道板仍有量级较小的弯矩,但此时的弯矩变化频率远大于轮对行驶于分析点正上方时的弯矩变化频率,故在轨道结构疲劳分析过程中不应该予以忽略.
2.2 自振频率分析
列车轮载为典型的周期性荷载,当荷载作用频率与轨道板自振频率相近时,易引发轨道结构的共振,此时列车轮载引发板体的自振效应可能会加剧轨道结构的疲劳损伤. 为探究轨道板振动频率分布特性,以L0 = 0~10.0 La为例,分析L0对轨道板自振频率的影响,结果如图4所示.
图4表明,轨道板自振频率与脱空长度呈负增长关系. 当轨道板不发生脱空时,轨道板的振动主要受砂浆层支承刚度的约束影响[20],因此轨道结构各阶自振频率集中于3500 Hz的量值. 当L0 < 3.0 La时,轨道板的高阶频率相近,其量值亦集中于3500 Hz,表明此时高阶频率引发的是轨道板支承段的局部振动. 当L0 > 4.0 La后,轨道板的自振频率随阶数增长,表明此时轨道板的振动能量主要集中于脱空段.
目前针对无砟轨道结构振动特性的分析普遍采用高速列车的车轮通过频率作为加载频率,假定列车轮载以恒定速度通过,若某一轴距对应的加载频率与自振频率相近,有引发轨道板共振的风险. 定义该轴距为临界轴距,若行车速度为360 km/h,局部脱空影响下列车轮载引发轨道结构共振的临界轴距如图5所示.
图5表明,引发轨道结构共振的临界轴距与脱空长度成正增长关系. CRH380车型的典型轴距主要有:固定轴距为2.5 m,同一车辆的前后两个转向架中心距为17.375 m,相邻车辆的两个转向架中心距为7.650 m,车辆间距为25.025 m[20]. 图5表明,若行车速度为360 km/h,仅固定轴距有引发轨道板共振的风险. 若L0 =0,此时的临界轴距约为0,故可认定轨道结构完好时,列车轮载不会引发轨道板的共振;L0小于整块板长时,列车轮载不会引发轨道板的高阶共振; L0 =7.0 La时,临界轴距与单组转向架的轴间距相等,表明此时列车轮载有引发轨道板1阶共振的风险,综合前述分析结果,列车轮载在引发轨道板共振前即发生板底开裂.
3. 轨道板振动疲劳特性分析
3.1 疲劳寿命预测方法
在建立轨道板寿命预测模型时,采用工程上常用的Miner线性损伤累积理论进行计算[21],当各种受载情况的损伤之和等于1时,轨道板发生疲劳破坏,即
∑iniNi=1, (1) 式中:ni为第i阶段时疲劳荷载的当前作用组数,i =O,Ⅰ,Ⅱ,Ⅲ,A;Ni为第i阶段时应力水平的疲劳作用总组数.
由于轨道板混凝土抗拉强度远小于抗压强度,故在疲劳特性分析过程中只考虑拉应力部分的计数. Tepfers等[21]通过拉伸疲劳试验推导出了混凝土单对数疲劳方程, 以列车组数作用下的疲劳破坏荷载循环次数为例,疲劳寿命方程表示为
S=a−b(1−R)lgNS, (2) 式中:R = σ min/σ max为应力比, σ max、 σ min分别为疲劳应力的上、下限;S = σmax/ft为应力水平,ft为混凝土抗拉强度;a、b为疲劳试验所确定的系数, a =1.0,b =0.06110112[22];NS为疲劳破坏时作用的列车组数.
当列车作用组数为1时,轨道板将承受共计64组轮对冲击(2组阶段Ⅰ、15组阶段Ⅲ)、17组高频自振(1组阶段O、1组阶段A、15组阶段Ⅱ)的作用,因此,NS与NO、NI、NⅡ、NⅢ、NA的关系为
1NS=∑iαiNi, (3) 式中:αi为第i阶段的荷载周期系数,根据16车编组CRH380列车的特点,取αO = 1,αI = 2,αⅡ = 16,αⅢ = 15,αA = 1.
文献[22]表明,式(2)在应力比较高时计算结果虽偏大,但满足实际工程的使用要求. 因此,可基于式(1) ~ (3)分析Ⅱ型板的高频振动疲劳特性.
通过有限元法得到列车移动荷载作用下轨道板分析点的弯矩时程曲线,换算成板底应力后采用雨流计数法[23]对应力时程曲线进行各阶段的计数,由此得到相应的轨道板疲劳应力谱,代入式(1)~(3)确定轨道板的疲劳寿命.
各阶段对疲劳寿命的影响系数为
ri=(αiNi)/(αiNi)(1NS)(1NS)=αiNSNi. (4) 若以阶段Ⅰ、Ⅲ的弯矩时程分布为例,分析列车轮载作用下无脱空轨道板的疲劳寿命,此时同一转向架上2个轮载存在叠加效应,轨道板在上述2个阶段出现幅值约为0.03 MPa的最大拉应力,通过雨流计数法得到该阶段列车轮载对轨道板体产生了幅值0.012 MPa、均值0.018 MPa的疲劳应力,共计64组. 式(1)~(3)计算表明,仅考虑荷载作用次数时(即仅考虑阶段Ⅰ、Ⅲ的疲劳荷载计数),当2.98 × 1013个列车组作用后,轨道板即发生疲劳破坏;若另考虑阶段O、Ⅱ、A板体自振的影响,以相同的计数方法算得考虑列车轮载引发板体自振的效应后,疲劳寿命为1.66 × 1013个列车组,表明考虑板体自振后,列车轮载对轨道板产生了约1.8倍的疲劳荷载当量.
3.2 脱空长度对疲劳特性影响
3.1节分析表明,阶段Ⅱ、Ⅲ具有较强的周期性,故以这2个阶段为代表,分别分析轨道板自振、列车轮载对结构疲劳特性的影响. 轨道板在L0 = 0~6.0 La的条件下,阶段Ⅱ、Ⅲ疲劳寿命值、疲劳寿命影响系数及疲劳寿命总值如图6所示.
图6表明,L0越长,轨道板越容易发生疲劳损伤. 当L0 > 4.7 La后,轨道板在1个列车组的作用下即发生疲劳破坏. 一般认为,无砟轨道的使用寿命是60 a,假定运营时每天作用100个列车组[19],则60 a内将有2.19 × 106个列车组通过,对应于图6的L0 = 3.2 La. 阶段Ⅱ的疲劳寿命受轨道板脱空长度影响较小,疲劳寿命大约维持在4.10 × 1013个作用组,当L0 = 0时,阶段Ⅱ的疲劳损伤影响系数为0.378;当板底发生脱空后,随着板体自振频率降低,阶段Ⅱ的疲劳应力作用次数减小,故该阶段对疲劳寿命的影响程度减弱,此时阶段Ⅲ对应的疲劳作用总组数逐渐接近于疲劳寿命总值. L0 = La时,阶段Ⅱ、Ⅲ的疲劳损伤影响系数分别为0.046、0.901;当L0 > 2.0 La后,阶段Ⅱ的疲劳寿命影响系数趋于0,表明此时可按传统的仅考虑列车轮载作用次数的计数方法进行疲劳寿命预测. 因此,轨道板L0 > 3.2 La后,现场无砟轨道难以维持60 a的使用寿命;当L0 > 2.0 La后,可忽略列车轮载引发板体自振的效应对疲劳损伤的影响.
4. 结 论
1) 轨道结构完好时,列车轮载引发轨道板伤损的可能性较小. 若列车行车速度为360 km/h,L0 =6.2 La时,轨道板在单次轮对荷载作用下即达到轨道板的抗拉强度极限;L0 =7.0 La时,列车轮载有引发轨道板共振的风险,表明列车轮载在引发轨道板共振前即发生板底开裂.
2) 当L0 > 4.7 La后,轨道板在1个列车组的作用下即发生疲劳破坏;L0 > 3.2 La后,现场无砟轨道难以维持60 a的使用寿命.
3) 轨道结构完好时,列车轮载引发的板体自振效应对轨道板疲劳损伤影响程度最大,此时在考虑板体自振后,列车轮载对轨道板产生约1.8倍的疲劳荷载当量;当L0 > 2.0 La后,可忽略板体自振对疲劳损伤的影响.
-
表 1 主要计算参数
Table 1. Main calculation parameters
部件 项目 取值 钢轨 弹性模量/Pa 2.06 × 1011 惯性矩/m4 7.745 × 10−3 密度/(kg•m−3) 7850 泊松比 0.30 扣件刚度/(N•m−1) 6.0 × 107 轨道板 弹性模量/Pa 3.55 × 1010 密度/(kg•m−3) 2400 泊松比 0.20 宽度(厚度)/m 2.55 (0.20) CA砂浆 弹性模量/Pa 7.0 × 109 厚度/m 0.03 单向受压刚度/(N•m−2) 5.95 × 1011 -
[1] 刘笑凯,刘学毅,肖杰灵,等. 温度作用下纵连式无砟轨道垂向稳定性研究[J]. 西南交通大学学报,2018,53(5): 921-927, 944. doi: 10.3969/j.issn.0258-2724.2018.05.007LIU Xiaokai, LIU Xueyi, XIAO Jieling, et al. Vertical stability of longitudinal continuous ballastless track under temperature variation[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 921-927, 944. doi: 10.3969/j.issn.0258-2724.2018.05.007 [2] 张鹏飞,桂昊,雷晓燕. CRTS Ⅱ型板断裂条件下桥上无缝线路伸缩力特性[J]. 西南交通大学学报,2020,55(5): 1036-1043.ZHANG Pengfei, GUI Hao, LEI Xiaoyan. Expansion-constriction force characteristics of continuously rails on bridge under fracture condition of CRTS Ⅱ track slab welded[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1036-1043. [3] LICHTBERGER B. Track compendium: formation, permanent way, maintenance, economics[M]. Hamburg: Eurail Press, 2005. [4] 李培刚. CRTS Ⅱ型板式轨道层间损伤及其影响研究[D]. 成都: 西南交通大学, 2015: 18-19. [5] 宋玉普,王怀亮,贾金青. 混凝土的多轴疲劳性能[J]. 建筑结构学报,2008,29(增刊1): 260-265.SONG Yupu, WANG Huailiang, JIA Jinqing. Behavior of concrete under multi-axial fatigue loading[J]. Journal of Building Structures, 2008, 29(S1): 260-265. [6] 王怀亮,宋玉普. 定侧压混凝土双轴疲劳破坏准则研究[J]. 土木工程学报,2010,43(10): 1-7.WANG Huailiang, SONG Yupu. Criterion of concrete fatigue failure under biaxial fatigue stress and constant confining stress[J]. China Civil Engineering Journal, 2010, 43(10): 1-7. [7] 冯秀峰,宋玉普,朱美春. 随机变幅疲劳荷载下预应力混凝土梁疲劳寿命的试验研究[J]. 土木工程学报,2006,39(9): 32-38. doi: 10.3321/j.issn:1000-131X.2006.09.005FENG Xiufeng, SONG Yupu, ZHU Meichun. An experimental study on the fatigue life of prestressed concrete beams under random-amplitude fatigue loading[J]. China Civil Engineering Journal, 2006, 39(9): 32-38. doi: 10.3321/j.issn:1000-131X.2006.09.005 [8] CORNELISSEN H A W, REINHARDT H W. Uniaxial tensile fatigue failure of concrete under constant- amplitude and programme loading[J]. Magazine of Concrete Research, 1984, 129(36): 216-227. [9] DOBROMIL P, JAN C, RADOMIR P. Material model for finite element modelling of fatigue crack growth in concrete[J]. Procedia Engineering, 2010, 2(1): 203-212. doi: 10.1016/j.proeng.2010.03.022 [10] 刘学毅, 赵坪锐, 杨荣山. 客运专线无砟轨道设计理论与方法[M]. 成都: 西南交通大学出版社, 2010. [11] 徐庆元,林青腾,方子匀,等. 桥上纵连板式无砟轨道疲劳应力谱的理论研究[J]. 西南交通大学学报,2018,53(5): 906-912. doi: 10.3969/j.issn.0258-2724.2018.05.005XU Qingyuan, LIN Qingteng, FANG Ziyun, et al. Theoretical study on fatigue stress spectrum of longitudinal connected slab track on bridge[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 906-912. doi: 10.3969/j.issn.0258-2724.2018.05.005 [12] 徐庆元,林青腾,方子匀,等. 组合荷载下桥上纵连板式无砟轨道疲劳特性[J]. 中国铁道科学,2017,38(6): 37-46. doi: 10.3969/j.issn.1001-4632.2017.06.06XU Qingyuan, LIN Qingteng, FANG Ziyun, et al. Fatigue characteristics of longitudinally connected slab ballastless track on bridge under combined load[J]. China Railway Science, 2017, 38(6): 37-46. doi: 10.3969/j.issn.1001-4632.2017.06.06 [13] POVEDA E, YU R C, LANCHA J C, et al. A numerical study on the fatigue life design of concrete slabs for railway tracks[J]. Engineering Structures, 2015, 100: 455-467. doi: 10.1016/j.engstruct.2015.06.037 [14] TARIFA M, ZHANG X X, RUIZ G, et al. Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks[J]. Engineering Structures, 2015, 100: 610-621. doi: 10.1016/j.engstruct.2015.06.016 [15] KONINGS P. A study on the lifetime aspects of the RHEDA 2000 track system [D]. Delft: Delft University of Technology, 2005. [16] 刘学毅,刘丹,赵坪锐,等. CRTS Ⅲ型板式无砟轨道疲劳性能试验研究[J]. 铁道工程学报,2016,33(11): 51-56,112. doi: 10.3969/j.issn.1006-2106.2016.11.010LIU Xueyi, LIU Dan, ZHAO Pingrui, et al. Experimental research on the fatigue behavior test of CRTS Ⅲ slab track[J]. Journal of Railway Engineering Society, 2016, 33(11): 51-56,112. doi: 10.3969/j.issn.1006-2106.2016.11.010 [17] 童明娜,卢朝辉,赵衍刚,等. CRTS Ⅱ型无砟轨道板疲劳时变可靠度研究[J]. 铁道学报,2020,42(10): 92-100. doi: 10.3969/j.issn.1001-8360.2020.10.013TONG Mingna, LU Zhaohui, ZHAO Yangang, et al. Time-dependent fatigue reliability evaluation of CRTS Ⅱ ballastless track slab[J]. Journal of the China Railway Society, 2020, 42(10): 92-100. doi: 10.3969/j.issn.1001-8360.2020.10.013 [18] CHAPELEAU X, SEDRAN T, COTTINEAU L M, et al. Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory[J]. Engineering Structures, 2013, 56: 1751-1757. doi: 10.1016/j.engstruct.2013.07.005 [19] 王青,卫军,董荣珍,等. CRTS Ⅱ板式无砟轨道结构的疲劳力学性能分析[J]. 铁道工程学报,2014,31(5): 41-47. doi: 10.3969/j.issn.1006-2106.2014.05.008WANG Qing, WEI Jun, DONG Rongzhen, et al. Fatigue behavior analysis of CRTS Ⅱ slab ballastless track structure[J]. Journal of Railway Engineering Society, 2014, 31(5): 41-47. doi: 10.3969/j.issn.1006-2106.2014.05.008 [20] 曹伟,宋玉普,刘海成. 混凝土三轴变幅拉-压疲劳性能试验研究[J]. 工程力学,2006,23(3): 111-117. doi: 10.3969/j.issn.1000-4750.2006.03.020CAO Wei, SONG Yupu, LIU Haicheng. Fatigue properties of plain concrete under triaxial variable-amplitude tension-compression cyclic loading[J]. Engineering Mechanics, 2006, 23(3): 111-117. doi: 10.3969/j.issn.1000-4750.2006.03.020 [21] TEPFERS R, KUTTI T. Fatigue strength of plain,ordinary and lightweight concrete[J]. Journal of the American Concrete Institute, 1979, 76(5): 635-652. [22] 徐庆元,张泽,陈效平,等. 桥上CRTS Ⅱ型板式无砟轨道混凝土疲劳寿命预测模型试验研究[J]. 铁道科学与工程学报,2017,14(8): 1565-1570. doi: 10.3969/j.issn.1672-7029.2017.08.001XU Qingyuan, ZHANG Ze, CHEN Xiaoping, et al. Experimental study on fatigue life prediction model of concrete of CRTS Ⅱ slab track on bridge[J]. Journal of Railway Science and Engineering, 2017, 14(8): 1565-1570. doi: 10.3969/j.issn.1672-7029.2017.08.001 [23] 祝志文,黄炎,文鹏翔,等. 随机车流下钢-UHPC组合正交异性桥面疲劳性能研究[J]. 中国公路学报,2017,30(3): 200-209. doi: 10.3969/j.issn.1001-7372.2017.03.022ZHU Zhiwen, HUANG Yan, WEN Pengxiang, et al. Investigation on fatigue performance of orthotropic bridge deck with steel-UHPC composite system under random traffic flows[J]. China Journal of Highway and Transport, 2017, 30(3): 200-209. doi: 10.3969/j.issn.1001-7372.2017.03.022 -