• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

超深层黄土滑坡作用下既有隧道结构体系力学特征

孙明磊 朱永全 李新志 何本国

孙明磊, 朱永全, 李新志, 何本国. 超深层黄土滑坡作用下既有隧道结构体系力学特征[J]. 西南交通大学学报, 2022, 57(1): 148-157. doi: 10.3969/j.issn.0258-2724.20200637
引用本文: 孙明磊, 朱永全, 李新志, 何本国. 超深层黄土滑坡作用下既有隧道结构体系力学特征[J]. 西南交通大学学报, 2022, 57(1): 148-157. doi: 10.3969/j.issn.0258-2724.20200637
SUN Minglei, ZHU Yongquan, LI Xinzhi, HE Benguo. Mechanical Characteristics of Existing Tunnel Structure Affected by Super Deep Loess Landslide[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 148-157. doi: 10.3969/j.issn.0258-2724.20200637
Citation: SUN Minglei, ZHU Yongquan, LI Xinzhi, HE Benguo. Mechanical Characteristics of Existing Tunnel Structure Affected by Super Deep Loess Landslide[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 148-157. doi: 10.3969/j.issn.0258-2724.20200637

超深层黄土滑坡作用下既有隧道结构体系力学特征

doi: 10.3969/j.issn.0258-2724.20200637
基金项目: 国家自然科学基金(51778380);中国铁路总公司科技研究开发计划课题(2016T002-C)
详细信息
    作者简介:

    孙明磊(1978—),男,副教授,博士研究生,研究方向为隧道及地下工程,E-mail:sml@stdu.edu.cn

    通讯作者:

    朱永全(1960—),男,教授,博士生导师,研究方向为隧道及地下工程,E-mail:7935526@163.com

  • 中图分类号: TU455

Mechanical Characteristics of Existing Tunnel Structure Affected by Super Deep Loess Landslide

  • 摘要:

    黄土地区滑坡灾害频发,滑坡尤其是超深层滑坡对既有隧道结构受力变形有重要影响,隧道滑坡体系变形特性、力学响应一直是学术界和工程界关注的焦点. 以某超深层滑坡地质灾害中的铁路隧道工程为依托,建立了“超深层黄土边坡-滑带-隧道”FLAC3D三维数值模型;利用基于位移突变的局部强度折减法模拟坡体失稳临界状态;针对不同滑带隧道相对位置,揭示了滑坡诱发条件下既有隧道衬砌结构受力及变形特征变化规律,并结合现场实测数据及结构破损情况初步分析了依托工程事故原因. 数值模拟结果显示:当滑带在隧道上方时,受中间围岩“牵动”作用明显,墙脚水平位移最大值27.83 mm;当滑带在隧道下方时,隧道“坐船”作用显著,墙脚水平位移最大值185.61 mm;当隧道位于滑面上方时危险性更高. 实测结果显示:沿纵向隧道位移呈“坐船”状,墙脚水平位移最大值为105.35 mm,小于滑带在隧道下方时工况;依托工程为黄土(粉土)-基岩滑坡,隧道位于滑体内,且滑坡仍处于蠕动状态,还未达到滑动临界状态.

     

  • 图 1  隧道与滑带相对位置关系(单位:m)

    Figure 1.  Relative position relationship between tunnel and sliding zone (unit:m)

    图 2  测点布置(单位:m)

    Figure 2.  Layout of measuring points (unit: m)

    图 3  工况1计算模型

    Figure 3.  Numerical model of case 1

    图 4  基于位移突变的强度逐级折减法分析流程

    Figure 4.  Analysis flow of stepwise strength reduction method based on displacement mutation

    图 5  折减系数-位移曲线

    Figure 5.  Reduction factor-displacement relation curves

    图 6  工况1衬砌位移沿纵向分布

    Figure 6.  Distribution of lining displacements along longitudinal direction in case 1

    图 7  工况2衬砌位移沿纵向分布

    Figure 7.  Distribution of lining displacements along longitudinal direction in case 2

    图 8  工况2隧道衬砌竖向位移

    Figure 8.  Vertical displacement of tunnel lining in case 2 (unit: m)

    图 9  工况1隧道衬砌总位移

    Figure 9.  Total displacement of tunnel lining in case 1

    图 10  工况2隧道衬砌总位移

    Figure 10.  Total displacement of tunnel lining in case 2

    图 11  工况1断面C应力云图

    Figure 11.  Stress contour of section C in case 1

    图 12  工况2 断面B应力云图

    Figure 12.  Stress contour of section B in case 2

    图 13  计算位移与实测结果对比

    Figure 13.  Comparison of calculated and measured displacements

    图 14  混凝土应力横断面分布(单位:MPa)

    Figure 14.  Cross-section distribution diagram of concrete stress (unit:MPa)

    表  1  地层及结构物理力学参数

    Table  1.   Physical parameters of strata and structures

    名称弹性模量 E/MPa容重 γ/(kN•m−3内聚力 C/kPa内摩擦角 Φ/(°)抗拉强度/kPa泊松比
    黄土 Q3 500 18.0 23.6 25.3 40 0.35
    黄土中滑带初始参数 500 18.0 23.6 25.3 40 0.35
    粉土 800 20.2 22.4 30.4 40 0.38
    粉土中滑带初始参数 800 20.2 22.4 30.4 40 0.38
    泥岩 1 100 20.6 30.4 36.1 110 0.35
    初期支护 23 000 23.0 0.20
    二次衬砌 C40 32 500 25.0 0.20
    下载: 导出CSV

    表  2  K = 2.96时隧道衬砌位移

    Table  2.   Displacement of tunnel lining at K = 2.96 mm

    工况位置方向测点编号
    1Y2Y3Y4Z2Z3Z45
    1B水平34.1536.2832.2928.3332.3926.1125.0125.99
    竖向−14.89−8.25−7.17−6.41−13.84−10.66−9.96−4.06
    竖向或水平0.440.230.220.230.430.410.400.16
    C水平30.1134.6930.9324.7725.8016.2816.5320.00
    竖向−37.48−24.19−20.31−18.66−32.57−25.42−23.65−12.62
    竖向或水平1.240.700.660.751.261.561.430.63
    2B水平78.8078.2574.5472.5480.2376.0874.0772.89
    竖向−3.60−0.89−0.78−0.13−6.07−4.71−4.110.93
    竖向或水平0.050.010.010.000.080.060.06−0.01
    C水平192.63192.07189.05187.86194.46190.94188.67187.89
    竖向−0.592.492.753.28−4.81−4.24−3.733.02
    竖向或水平0.00−0.01−0.01−0.020.020.020.02−0.02
    注:竖向、水平位移分别以z轴正向、x轴正向为正;BC分别位于Y = 152 m(滑体前端边界)、Y = 328 m(滑体中部).
    下载: 导出CSV

    表  3  K = 2.96时典型断面隧道衬砌主应力汇总

    Table  3.   Summary of principal stresses of tunnel lining with typical section when K = 2.96

    工况断面
    位置
    埋深/m最大主应力最小主应力最大剪应力
    应力值/MPa增长率/%应力值增长率/%应力值
    /MPa
    增长率/%
    1A1792.00 (0.29)590−10.45 (−8.48)235.05 (4.15)22
    B4.32 (0.30)1340−14.35 (−8.54)687.14 (4.19)70
    C4.88 (0.32)1425−21.57 (−8.55)15210.56 (4.19)152
    2A2181.91 (0.24)696−11.07 (−8.08)375.36 (3.95)36
    B9.15 (0.54)1594−20.56 (−8.28)14812.83 (4.08)214
    C1.48 (0.80)85−15.86 (−8.38)897.67 (4.19)83
    注:括号中数字为隧道开挖支护后衬砌应力(折减前);断面 A位于 Y =76 m (滑体外).
    下载: 导出CSV
  • [1] 刘文红. 黄土高原滑坡发育背景与成灾模[D]. 西安: 长安大学, 2016.
    [2] 杨光华,钟志辉,张玉成,等. 滑坡灾害的机制与力学特性分析[J]. 岩石力学与工程学报,2016,35(增刊2): 4009-4017.

    YANG Guanghua, ZHONG Zhihui, ZHANG Yucheng, et al. Analysis of mechanism and mechanical characteristics of landslide disaster[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4009-4017.
    [3] 马惠民,吴红刚. 山区高速公路高边坡病害防治实践[J]. 铁道工程学报,2011(7): 34-41. doi: 10.3969/j.issn.1006-2106.2011.07.007

    MA Huimin, WU Honggang. Practices on high slope disease control of highways in mountainous area[J]. Chinese Journal of Railway Engineering Society, 2011(7): 34-41. doi: 10.3969/j.issn.1006-2106.2011.07.007
    [4] 柳墩利. 隧道开挖对边坡稳定性的影响规律[J]. 铁道建筑,2018,58(7): 68-71. doi: 10.3969/j.issn.1003-1995.2018.07.17

    LIU Dunli. Influence of tunnel excavation on side-slope stability[J]. Railway Engineering, 2018, 58(7): 68-71. doi: 10.3969/j.issn.1003-1995.2018.07.17
    [5] 骆晓依,苏永华,廖君橙. 隧道开挖扰动对古滑坡稳定性的影响分析[J]. 铁道科学与工程学报,2019,16(8): 2028-2034.

    LUO Xiaoyi, SU Yonghua, LIAO Juncheng. Analysis on influence of tunnel excavation disturbance on stability of ancient landslide[J]. Journal of Railway Science and Engineering, 2019, 16(8): 2028-2034.
    [6] 刘天哲,李红卫,王宇. 坡体病害地段的隧道变形机理分析[J]. 兰州大学学报(自然科学版),2011,47(Proceedings): 36-40.

    LIU Tianzhe, LI Hongwei, WANG Yu. Deformation mechanism analysis on tunnel in slope disaster section[J]. Journal of Lanzhou University (Natural Sciences), 2011, 47(Proceedings): 36-40.
    [7] 王雷,沈远,白朝能. 铁路隧道斜穿滑坡体受力变形特征三维分析[J]. 铁道工程学报,2017(1): 16-21. doi: 10.3969/j.issn.1006-2106.2017.01.004

    WANG Lei, SHE Yuan, BAI Chaoneng. Three- dimensional analysis of force and deformation characteristics of oblique crossing of railway tunnel with landslide[J]. Journal of Railway Engineering Society, 2017(1): 16-21. doi: 10.3969/j.issn.1006-2106.2017.01.004
    [8] NOFERINI L, PIERACCINI M, MECATTI D, et al. Using GB-SAR technique to monitor slow moving landslide[J]. Engineering Geology, 2007, 95(3/4): 88-98.
    [9] 尹静,邓荣贵,钟志彬,等. 横穿滑坡变形区隧道受力变形规律及影响因素分析[J]. 岩石力学与工程学报,2016,35(增刊2): 3615-3625.

    YIN Jing, DENG Ronggui, ZHONG Zhibin, et al. Stress and deformation laws and influence factors analysis of tunnel across the slope deformation zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3615-3625.
    [10] 周德培,毛坚强,张鲁新,等. 隧道变形与坡体灾害相互关系及其预测模式[J]. 铁道学报,2002,24(1): 81-86. doi: 10.3321/j.issn:1001-8360.2002.01.018

    ZHOU Peide, MAO Jianqiang, ZHANG Luxin, et al. Relationship between tunnel deformation with slope disasters and its prediction model[J]. Journal of the China Railway Society, 2002, 24(1): 81-86. doi: 10.3321/j.issn:1001-8360.2002.01.018
    [11] 赵金,吴红刚,刘德仁,等. 滑坡内隧道变形模式与荷载计算方法[J]. 中国地质灾害与防治学报,2019,30(1): 112-118.

    ZHAO Jin, WU Honggang, LIU Deren, et al. Deformation model of the tunnels within landslides and methods for loading caculation[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 112-118.
    [12] 闫志雄,王磊,刘新荣,等. 黄土隧道变形与坡体灾害相互关系及预测方法[J]. 地下空间与工程学报,2013,9(增刊2): 1840-1844,1881.

    YAN Zhixiong, WANG Lei, LIU Xinrong, et al. Correlation and prediction methods of loess tunnel deformation and slope disaster[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(S2): 1840-1844,1881.
    [13] 秦睿,陈小云. 隧道-滑坡体系应力变形机理模型试验研究[J]. 科学技术与工程,2017,17(29): 363-367. doi: 10.3969/j.issn.1671-1815.2017.29.054

    QIN Rui, CHEN Xiaoyun. Experimental research on stress and strain mechanism of tunnel-land system[J]. Science Technology and Engineering, 2017, 17(29): 363-367. doi: 10.3969/j.issn.1671-1815.2017.29.054
    [14] 张治国,马兵兵,黄茂松,等. 山区滑坡诱发既有隧道受力变形影响分析[J]. 岩土力学,2018,39(10): 3555-3564,3572.

    ZHANG Zhiguo, MA Bingbing, HUANG Maosong, et al. Influence analyses on force and deformation of existing tunnels induced by landslide in mountain region[J]. Rock and Soil Mechanics, 2018, 39(10): 3555-3564,3572.
    [15] 潘卫东,张鲁新,朱元林,等. 坡体病害地段利用隧道变形规律预测山体灾害的方法[J]. 岩石力学与工程学报,2001,20(4): 502-507. doi: 10.3321/j.issn:1000-6915.2001.04.016

    PAN Weidong, ZHANG Luxin, ZHU Yuanlin, et al. Forecast method of mountain disaster using tunnel deformation law in slope field[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4): 502-507. doi: 10.3321/j.issn:1000-6915.2001.04.016
    [16] 刘天翔,王忠福. 隧道正交穿越深厚滑坡体的相互影响分析与应对措施[J]. 岩土力学,2018,39(1): 265-274.

    LIU Tianxiang, WANG Zhongfu. Analysis of interaction when tunnel orthogonal crossing deep-seated landslide and the corresponding control measures[J]. Rock and Soil Mechanics, 2018, 39(1): 265-274.
    [17] 中铁第一勘案设计院集团有限公司. 深层黄土地质灾害综合勘测与整治技术成果报告[R]. 西安: 中铁第一勘案设计院集团有限公司, 2017.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  197
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2020-11-06
  • 网络出版日期:  2020-11-11
  • 刊出日期:  2020-11-11

目录

    /

    返回文章
    返回