• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

网络环境下全景图和点云数据快速融合可视化方法

朱军 陈逸东 张昀昊 黄华平 吴思豪 赵犁

朱军, 陈逸东, 张昀昊, 黄华平, 吴思豪, 赵犁. 网络环境下全景图和点云数据快速融合可视化方法[J]. 西南交通大学学报, 2022, 57(1): 18-27. doi: 10.3969/j.issn.0258-2724.20200360
引用本文: 朱军, 陈逸东, 张昀昊, 黄华平, 吴思豪, 赵犁. 网络环境下全景图和点云数据快速融合可视化方法[J]. 西南交通大学学报, 2022, 57(1): 18-27. doi: 10.3969/j.issn.0258-2724.20200360
ZHU Jun, CHEN Yidong, ZHANG Yunhao, HUANG Huaping, WU Sihao, ZHAO Li. Visualization Method for Fast Fusion of Panorama and Point Cloud Data in Network Environment[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 18-27. doi: 10.3969/j.issn.0258-2724.20200360
Citation: ZHU Jun, CHEN Yidong, ZHANG Yunhao, HUANG Huaping, WU Sihao, ZHAO Li. Visualization Method for Fast Fusion of Panorama and Point Cloud Data in Network Environment[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 18-27. doi: 10.3969/j.issn.0258-2724.20200360

网络环境下全景图和点云数据快速融合可视化方法

doi: 10.3969/j.issn.0258-2724.20200360
基金项目: 国家自然科学基金(U2034202);四川省科技计划 (2020JDTD0003,2019YFG0460)
详细信息
    作者简介:

    朱军(1976—),男,教授,博士,研究方向为三维地理信息系统与虚拟地理环境,E-mail:zhujun@swjtu.edu.cn

  • 中图分类号: P208

Visualization Method for Fast Fusion of Panorama and Point Cloud Data in Network Environment

  • 摘要:

    现有多源数据融合可视化方法对数据精度要求高,匹配过程复杂,且传统点云的组织索引方式冗余,面对复杂数据的动态性较差,索引效率较低,难以支撑在网络环境下进行多源数据高效可视化交互. 针对上述问题,提出面向网络轻量化应用的全景图与点云数据快速融合可视化方法. 探讨了二维影像与三维点云的快速映射匹配机制、非规则性八叉树点云优化组织与多细节层次(levels of detail,LOD)动态调度等关键技术;并设计了融合场景跨模态交互分析机制,以实现全景图和点云数据快速融合可视化;最后构建了原型系统并进行案例实验. 结果表明该方法缩短了全景图与点云数据融合匹配时间,并在网络环境中场景渲染帧数稳定在40帧/s以上,能够支持融合场景的高效可视化与交互分析.

     

  • 图 1  全景图构建三维映射

    Figure 1.  Construction of 3D mapping from panorama

    图 2  二维影像映射原理

    Figure 2.  Two-dimensional image mapping principle

    图 3  寻找特征点

    Figure 3.  Finding of feature points

    图 4  匹配后融合不精确

    Figure 4.  Fusion inaccuracy after matching

    图 5  基于非规则性八叉树点云数据组织

    Figure 5.  Point cloud data organization based on irregular octree

    图 6  不同位置融合可视化结果

    Figure 6.  Fusion visualization results at different positions

    图 7  融合匹配精度

    Figure 7.  Fusion accuracy

    图 8  融合场景属性信息查询

    Figure 8.  Attribute information query for fusion scene

    图 9  量测标绘交互过程

    Figure 9.  Measurement plotting interactive process

    图 10  场景渲染帧率、内存使用变化趋势

    Figure 10.  Variation of scene rendering frame rate and memory usage

    表  1  不同过程执行消耗时间

    Table  1.   Time consumed by different processes

    执行过程消耗时间/s
    加载点云数据5.8
    加载视点点云细节数据8.9
    加载视点全景图数据0.8
    数据匹配融合可视化0.6
    下载: 导出CSV

    表  2  传统方法与轻量化方法结果对比

    Table  2.   Comparison of results between traditional method and lightweight method s

    执行过程常规方法耗时轻量化方法耗时
    点云组织4.32.7
    数据匹配融合1.70.6
    数据可视化11.26.6
    下载: 导出CSV
  • [1] 华一新,曹亚妮,李响. 地理空间可视分析及其研究方向综述[J]. 测绘科学技术学报,2012,29(4): 235-239. doi: 10.3969/j.issn.1673-6338.2012.04.001

    HUA Yixin, CAO Yani, LI Xiang. Summarization of geospatial visual analytics and its research directions[J]. Journal of Geomatics Science and Technology, 2012, 29(4): 235-239. doi: 10.3969/j.issn.1673-6338.2012.04.001
    [2] 周志光,石晨,史林松,等. 地理空间数据可视分析综述[J]. 计算机辅助设计与图形学学报,2018,30(5): 747-763.

    ZHOU Zhiguang, SHI Chen, SHI Linsong, et al. A survey on the visual analytics of geospatial data[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(5): 747-763.
    [3] WONG P C, FOOTE H, KAO D L, et al. Multivariate visualization with data fusion[J]. Information Visualization, 2002, 1(3/4): 182-193.
    [4] HERMAN I, MELANCON G, MARSHALL M S. Graph visualization and navigation in information visualization:a survey[J]. IEEE Transactions on Visualization and Computer Graphics, 2000, 6(1): 24-43. doi: 10.1109/2945.841119
    [5] 张靖,江万寿. 激光点云与光学影像配准:现状与趋势[J]. 地球信息科学学报,2017,19(4): 528-539.

    ZHANG Jing, JIANG Wanshou. Registration between laser scanning point cloud and optical images:status and trends[J]. Journal of Geo-Information Science, 2017, 19(4): 528-539.
    [6] ÖZDEMIR E, REMONDINO F. Segmentation of 3D photogrammetric point cloud for 3D building modeling[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2018, XLII-4/W10: 135-142.
    [7] ZHENG J Y. Digital route panoramas[J]. IEEE MultiMedia, 2003, 10(3): 57-67. doi: 10.1109/MMUL.2003.1218257
    [8] HUANG F, KLETTE R. Stereo panorama acquisition and automatic image disparity adjustment for stereoscopic visualization[J]. Multimedia Tools and Applications, 2010, 47(3): 353-377. doi: 10.1007/s11042-009-0328-2
    [9] 李海亭,彭清山,王闪,等. 数字城市中的全景地图系统建设方法研究[J]. 测绘通报,2011(4): 71-73.

    LI Haiting, PENG Qingshan, WANG Shan, et al. Research on panoramic mapping system in digital city[J]. Bulletin of Surveying and Mapping, 2011(4): 71-73.
    [10] PARMEHR E G, FRASER C S, ZHANG C S, et al. Automatic registration of optical imagery with 3D LiDAR data using statistical similarity[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88: 28-40. doi: 10.1016/j.isprsjprs.2013.11.015
    [11] 张帆,黄先锋,李德仁. 激光扫描与光学影像数据配准的研究进展[J]. 测绘通报,2008(2): 7-10.

    ZHANG Fan, HUANG Xianfeng, LI Deren. A review of registration of laser scanner data and optical image[J]. Bulletin of Surveying and Mapping, 2008(2): 7-10.
    [12] 马洪超,姚春静,邬建伟. 利用线特征进行高分辨率影像与LiDAR点云的配准[J]. 武汉大学学报(信息科学版),2012,37(2): 136-140,159.

    MA Hongchao, YAO Chunjing, WU Jianwei. Registration of LiDAR point clouds and high resolution images based on linear features[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 136-140,159.
    [13] 朱庆,尚琪森,胡翰,等. 三角网模型多目标加权最短路径的特征线提取[J]. 西南交通大学学报,2021,56(1): 116-122.

    ZHU Qing, SHANG Qisen, HU Han, et al. Feature line extraction from 3D model of oblique photogrammetry based on multiobjective weighted shortest path[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 116-122.
    [14] LEBERL F, IRSCHARA A, POCK T, et al. Point clouds[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(10): 1123-1134.
    [15] 卢秀山,俞家勇,田茂义,等. 车载激光点云与序列化全景影像融合方法[J]. 中国激光,2018,45(5): 245-252.

    LU Xiushan, YU Jiayong, TIAN Maoyi, et al. Fusion method of vehicle laser point cloud and serialized panoramic image[J]. Chinese Journal of Lasers, 2018, 45(5): 245-252.
    [16] 冯文灏. 近景摄影测量: 物体外形与运动状态的摄影法测定[M]. 武汉: 武汉大学出版社, 2002.
    [17] 黄明,贾嘉楠,李闪磊,等. 多像位姿估计的全景纹理映射算法[J]. 武汉大学学报(信息科学版),2019,44(11): 1622-1632.

    HUANG Ming, JIA Jianan, LI Shanlei, et al. Panoramic texture mapping algorithm based on multi-image pose estimation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1622-1632.
    [18] 王晏民,胡春梅. 一种地面激光雷达点云与纹理影像稳健配准方法[J]. 测绘学报,2012,41(2): 266-272.

    WANG Yanmin, HU Chunmei. A robust registration method for terrestrial LiDAR point clouds and texture image[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2): 266-272.
    [19] 刘中华,李鹏飞,许章平. 基于点云数据的改进四叉树空间索引研究[J]. 测绘与空间地理信息,2019,42(5): 38-39,42,47. doi: 10.3969/j.issn.1672-5867.2019.05.012

    LIU Zhonghua, LI Pengfei, XU Zhangping. Research on improved quadtree spatial index based on point cloud data[J]. Geomatics & Spatial Information Technology, 2019, 42(5): 38-39,42,47. doi: 10.3969/j.issn.1672-5867.2019.05.012
    [20] 曹文君,赵祚喜. Ladybug系列多目全景视觉技术的应用研究[J]. 机械与电子,2017,35(12): 27-30. doi: 10.3969/j.issn.1001-2257.2017.12.007

    CAO Wenjun, ZHAO Zuoxi. Study on application of multi-view panoramic vision technology to Ladybug series[J]. Machinery & Electronics, 2017, 35(12): 27-30. doi: 10.3969/j.issn.1001-2257.2017.12.007
    [21] 欧阳峰,龚桂荣,何列松. 面向WebGL的矢量数据三维绘制技术[J]. 测绘科学技术学报,2016,33(6): 635-638, 643.

    OUYANG Feng, GONG Guirong, HE Liesong. Vector 3D rendering techniques based on WebGL[J]. Journal of Geomatics Science and Technology, 2016, 33(6): 635-638, 643.
    [22] 刘全海,鲍秀武,李楼. 激光点云与全景影像配准方法研究[J]. 现代测绘,2016,39(1): 21-25. doi: 10.3969/j.issn.1672-4097.2016.01.007

    LIU Quanhai, BAO Xiuwu, LI Lou. Research of registration based on panoramic images and laser point cloud[J]. Modern Surveying and Mapping, 2016, 39(1): 21-25. doi: 10.3969/j.issn.1672-4097.2016.01.007
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  631
  • HTML全文浏览量:  193
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 修回日期:  2020-09-21
  • 网络出版日期:  2020-10-27
  • 刊出日期:  2020-10-27

目录

    /

    返回文章
    返回