Mechanical Parameters of Concealed Fault Rock Mass on Nujiang River
-
摘要:
断层带岩体是工程建设中重点关注的一类特殊岩体,为了获取考虑围压效应的隐伏断层带岩体真实力学参数,依托怒江某水电工程,对坝基深厚覆盖层下隐伏断层带岩体开展三轴试验. 总结了一套断层带岩体取样—试验前处理—施加初始围压—三轴试验—参数取值的评价方法,可避免三轴试验过程中断层带岩体散体以及液压油对试样的影响,使试验结果更接近断层带岩体天然状态下的真实力学参数. 试验结果表明:5个断层带岩体试样的变形模量为449~921 MPa,平均值为665 MPa;黏聚力为0.04~0.22 MPa,平均值为0.13 MPa,取80%保证率的标准值为0.12 MPa;内摩擦系数为0.32~0.61,平均值为0.46,取80%保证率的标准值为0.35;黏聚力试验值比内摩擦系数试验值离散性大,表明断层带岩体黏聚力受物质结构、断层泥含量、胶结程度等的影响更大.
Abstract:The rock mass in a fault zone is a special type of rock mass that has attracted wide attention in the field of civil engineering. Triaxial tests are conducted on the rock mass of a concealed fault zone of a hydropower project on the Nujiang river to obtain the mechanical parameters of the rock mass in the concealed fault zone under confining pressure. Moreover, a systematic method (rock mass sampling in a fault zone, pretreatment of the rock mass prior to test, application of initial confining pressure, triaxial test, and evaluation of mechanical parameters) is summarized. This method avoids the effects of the disintegration of the fault zone and the hydraulic fluid on the samples when the triaxial test is conducted. In this way, the obtained mechanical parameters will be closer to the actual mechanical parameters of the rock mass in the fault zone in a natural state. The results show that the deformation modulus of five samples range from 449 MPa to 921 MPa, with the average value being 665 MPa. The cohesion ranges from 0.04 MPa to 0.22 MPa, with the average value being 0.13 MPa and the standard value being 0.12 MPa at a guarantee rate of 80%. The internal friction coefficient ranges from 0.32 to 0.61, with the average value being 0.46 and the standard value being 0.35 at a guarantee rate of 80%. In addition, the test values of cohesion are more discrete than those of the internal friction coefficient, indicating that the cohesion of the fault zone rock mass is more deeply affected by the material structure, fault gouge content, and cementation degree.
-
表 1 试样物理指标
Table 1. Physical values of samples
试样
编号取样
位置深度/m 直径/cm 高/cm 重量/g 密度/
(g•cm−3)1 号 ZK122 33 5.3 9.9 515 2.36 2 号 ZK122 39 6.1 11.2 769 2.35 3 号 ZK128 65 5.6 9.8 558 2.31 4 号 ZK114 70 5.7 10.1 597 2.32 5 号 ZK114 62 5.1 9.5 460 2.37 表 2 断层带岩体变形模型试验结果
Table 2. Test results of deformation modulus of the fault rock mass
MPa 试样编号 变形模量 第 1 个 第 2 个 第 3 个 1 号 728 609 492 2 号 501 511 449 3 号 832 838 825 4 号 921 813 607 5 号 625 622 596 表 3 三轴试验结果
Table 3. Results of triaxial test
试样编号 σ1/MPa σ3/MPa C/MPa f 1 号 0.96 0.17 0.13 0.52 1.28 0.33 1.60 0.45 1.84 0.54 2.23 0.70 2.89 0.82 2.91 0.96 2 号 0.95 0.15 0.04 0.61 1.26 0.31 1.66 0.49 1.91 0.63 2.34 0.82 3.09 0.97 3.62 1.16 5.09 1.37 3 号 0.82 0.12 0.22 0.35 1.13 0.30 1.63 0.43 1.95 0.61 2.02 0.77 4 号 1.28 0.21 0.17 0.49 1.72 0.39 1.93 0.56 2.07 0.78 2.48 0.96 4.29 1.23 5 号 0.66 0.23 0.08 0.32 1.05 0.48 1.36 0.73 1.50 0.87 1.94 1.09 2.47 1.36 3.17 1.62 3.96 1.95 -
[1] NIE D X, ZHANG X G, HAN W F. Studies on the correlation between the effect of confining pressure and the physical and mechanical properties of weak interactions [C]//6th International Congress International Association of Engineering Geology. Rotterdam: [s.n.], 1990: 2473-2479. [2] ZHANG X G, NIE D X, HAN W F. Studies on principal factors effecting shear strength of weak intercalations and the correlation between them[C]//6th International Congress International Association of Engineering Geology. Rotterdam: [s.n.], 1990: 2579-2583. [3] 聂德新, 任光明, 左三胜. 用重力压密原理评价大型滑坡滑面强度参数[J]. 地质灾害与环境保护, 1996, 7(1): 7- 12.NIE Dexin, REN Guangming, ZUO Shansheng. Study on strength parameter of slide zone soil with the principle of gravity compaction of sediments[J]. Journal of Geological Hazards and Environment Preservation, 1996, 7(1): 7-12. [4] 聂德新,符文熹,任光明,等. 天然围压下软弱层带的工程特性及当前研究中存在的问题分析[J]. 工程地质学报,1999,7(4): 298-302. doi: 10.3969/j.issn.1004-9665.1999.04.002NIE Dexin, FU Wenxi, REN Guangming, et al. Analysis of engineering properties of weak layer zone under natural confining pressure and the existing problems in present studies[J]. Journal of Engineering Geology, 1999, 7(4): 298-302. doi: 10.3969/j.issn.1004-9665.1999.04.002 [5] BOZKURT N. In-situ stress field and mechanics of fault reactivation in the Gediz Graben,Western Turkey[J]. Journal of Geodynamics, 2013, 65: 136-147. doi: 10.1016/j.jog.2012.03.006 [6] BROWN E T, HOEK E. Trends in relationships between measured in-site stress and depth[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(4): 72-78. [7] ZHANG Y, XU W Y, GU J J, et al. Triaxial creep tests of weak sandstone from the deflection zone of high dam foundation[J]. Journal of Central South University of Technology, 2013, 20: 2528-2536. doi: 10.1007/s11771-013-1765-7 [8] 付小敏,魏伟. 破碎带小岩体三轴试验方法探讨[J]. 工程与试验,2009,49(4): 16-20. doi: 10.3969/j.issn.1674-3407.2009.04.005FU Xiaomin, WEI Wei. Discussion of triaxial tests method of small rock mass from fracture zone[J]. Engineering & Test, 2009, 49(4): 16-20. doi: 10.3969/j.issn.1674-3407.2009.04.005 [9] 周洪福,聂德新,陈津民. 深部破碎岩体变形模量的一种新型试验方法及工程应用[J]. 吉林大学学报(地球科学版),2010,40(6): 1390-1394.ZHOU Hongfu, NIE Dexin, CHEN Jinming. A new experimentation method and an example of deformation modulus for deep cracked rock mass[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(6): 1390-1394. [10] 王宇,李建林,刘锋. 坝基软弱夹层剪切蠕变及其长期强度试验研究[J]. 岩石力学与工程学报,2013,32(增刊2): 3378-3384.WANG Yu, LI Jianlin, LIU Feng. Experiment research on shear creep and its long-term strength of weak intercalation in dam foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3378-3384. [11] 冯树荣,蒋中明,钟辉亚,等. 向家坝水电站左岸坝基挤压破碎带变形特性试验研究[J]. 岩土力学,2015,36(增刊2): 539-544.FENG Shurong, JIANG Zhongming, ZHONG Huiya, et al. Experiment study of deformation characteristics of broken rock mass under dam foundation at left bank of Xiangjiaba hydropower project[J]. Rock and Soil Mechanics, 2015, 36(S2): 539-544. [12] 李永松,陈建平,尹健民,等. 断层力学参数反演及其对地应力场扰动效应研究[J]. 水力发电,2014,40(2): 45-47. doi: 10.3969/j.issn.0559-9342.2014.02.014LI Yongsong, CHEN Jianping, YIN Jianmin, et al. Mechanical parameters back analysis for faults and study on fault’s disturbance effect to in-situ stress field[J]. Water Power, 2014, 40(2): 45-47. doi: 10.3969/j.issn.0559-9342.2014.02.014 [13] 张勇,聂德新,刘彬,等. 下卧软弱岩带变形模量取值研究[J]. 工程地质学报,2015,23(1): 99-102.ZHANG Yong, NIE Dexin, LIU Bin, et al. New evaluation method for deformation modulus of underlain weak rock zone[J]. Journal of Engineering Geology, 2015, 23(1): 99-102. [14] 张向东,袁升礼,殷增光,等. 基于遗传算法的软岩破碎带巷道围岩参数反分析[J]. 辽宁工程技术大学学报(自然科学版),2018,37(2): 285-289.ZHANG Xiangdong, YUAN Shengli, YIN Zengguang, et al. Parameter back analysis of surrounding rock of roadway in fracture zone based on the genetic algorithm[J]. Journal of Liaoning Technical University (Natural Science Edition), 2018, 37(2): 285-289. [15] 刘瑜,刘启蒙,姜涛. 新集F10断层组断层泥分维及其水文地质特征[J]. 黑龙江科技学院学报,2013,23(4): 371-374.LIU Yu, LIU Qimeng, JIANG Tao. Xinji group F10 fault gouge fractal dimension and its hydrogeological significance[J]. Journal of Heilongjiang Institute of Science and Technology, 2013,23(4): 371-374. [16] 於汝山,杨宜,许冬丽. Hoek-Brown强度准则在深部岩体力学参数估算中的应用研究[J]. 长江科学院院报,2018,35(1): 123-127. doi: 10.11988/ckyyb.20160924YU Rushan, YANG Yi, XU Dongli. Study on the application of Hoek-Brown strength criterion in estimating mechanics parameters of deep rock mass[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(1): 123-127. doi: 10.11988/ckyyb.20160924 [17] ZHAO Y, YANG T H, YU Q L, et al. Dynamic reduction of rock mass mechanical parameters based on numerical simulation and microseismic data-A case study[J]. Tunnelling and Underground Space Technology, 2019, 83: 437-451. doi: 10.1016/j.tust.2018.09.018 [18] 张默,罗昌民,周玉新,等. 基于PLS法岩体边坡抗剪参数确定及稳定性分析[J]. 金属矿山,2018(8): 132-136.ZHANG Mo, LUO Changmin, ZHOU Yuxin, et al. Determination of shear parameters of rock slope and its stability analysis based on PLS method[J]. Metal Mine, 2018(8): 132-136. [19] 中国水电顾问集团成都勘测设计研究院. 水电水利工程岩石试验规程: DL/T 5368-2007[S]. 北京: 中国电力出版社, 2007. [20] 水电水利规划设计总院. 混凝土重力坝设计规范: NB/T 35026—2014[S]. 北京: 中国电力出版社, 2015.