• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

不同脏污质对格栅加筋道砟性能的影响

陈静 高睿 刘洋泽鹏 张荣隆 石知政

陈静, 高睿, 刘洋泽鹏, 张荣隆, 石知政. 不同脏污质对格栅加筋道砟性能的影响[J]. 西南交通大学学报, 2022, 57(1): 200-206. doi: 10.3969/j.issn.0258-2724.20200307
引用本文: 陈静, 高睿, 刘洋泽鹏, 张荣隆, 石知政. 不同脏污质对格栅加筋道砟性能的影响[J]. 西南交通大学学报, 2022, 57(1): 200-206. doi: 10.3969/j.issn.0258-2724.20200307
CHEN Jing, GAO Rui, LIU Yangzepeng, ZHANG Ronglong, SHI Zhizheng. Influence of Various Fouling Materials on Geogrid-Reinforced Ballast Performance[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 200-206. doi: 10.3969/j.issn.0258-2724.20200307
Citation: CHEN Jing, GAO Rui, LIU Yangzepeng, ZHANG Ronglong, SHI Zhizheng. Influence of Various Fouling Materials on Geogrid-Reinforced Ballast Performance[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 200-206. doi: 10.3969/j.issn.0258-2724.20200307

不同脏污质对格栅加筋道砟性能的影响

doi: 10.3969/j.issn.0258-2724.20200307
基金项目: 国家自然科学基金(51178358,51878521)
详细信息
    作者简介:

    陈静(1994—),女,博士研究生,研究方向为道路与铁道工程,E-mail:chenjing_whu@hotmail.com

    通讯作者:

    高睿(1975—),男,教授,博士,研究方向为道路与铁道工程,E-mail:gaorui@whu.edu.cn

  • 中图分类号: U213.7

Influence of Various Fouling Materials on Geogrid-Reinforced Ballast Performance

  • 摘要:

    加筋格栅广泛应用于有砟轨道中以提高道床承载及侧向抗变形性能. 由于受到来自行进列车落下的煤渣或底砟及地基层翻冒的泥浆等的污染,格栅加筋道砟集料的力学性能会受到严重影响. 选用黏土、煤渣两种有砟铁路常见脏污杂质,对格栅加筋道砟开展了不同法向压力、不同脏污程度下的大型直剪试验,对比研究了不同脏污质对格栅加筋道砟的抗剪强度、峰值摩擦角、法向剪胀位移以及峰值剪胀角的影响差异,并分析了其差异产生的力学机制. 试验结果表明:脏污质的存在会降低格栅加筋道砟的抗剪强度和峰值摩擦角,并减小试样的法向剪胀位移和峰值剪胀角;相较于受黏土污染的格栅加筋道砟,受煤渣污染的集料具有更低的抗剪强度和峰值摩擦角,以及更高的法向剪胀位移和峰值剪胀角,表明煤渣脏污对格栅加筋道砟的力学性能会产生更加不利的影响.

     

  • 图 1  大型直剪设备

    Figure 1.  Large-scale direct shear test equipment

    图 2  道砟级配

    Figure 2.  Size distribution of ballast particles

    图 3  试验用土工格栅

    Figure 3.  Geogrid used in the experiments

    图 4  不同脏污情况下受格栅加固与未受格栅加固道砟剪切应力τs与剪切位移 Δs的关系

    Figure 4.  Relationships between τs and Δs for geogrid-reinforced and unreinforced ballast under various fouling levels

    图 5  峰值强度τsmax与法向压力σn关系

    Figure 5.  Relationships between peak shearing strength τsmax and normal stress σn

    图 6  黏土及煤渣污染示意

    Figure 6.  Schematic diagram of ballast aggregates fouled by clays and coals

    图 7  Φmaxσn关系

    Figure 7.  Relationships between peak friction angle Φmax and normal stress σn

    图 8  不同脏污情况下受格栅加固与未受格栅加固道砟ΔnΔs关系

    Figure 8.  Relationships between Δn and Δs for geogrid-reinforced and unreinforced ballast under various fouling levels

    图 9  σn = 55 kPa时ΔnΔs关系

    Figure 9.  Relationships between normal displacement Δn and shearing displacement Δs under σn=55 kPa

    图 10  ϕmaxσn关系

    Figure 10.  Relationships between ϕmax and σn

    表  1  道砟及脏污质相关力学指标

    Table  1.   Mechanical indexes of ballast and fouling substances

    名称比重堆积密度/
    (kg•m−3
    含水
    率/%
    孔隙
    e
    液限ωL/%塑限ωP/%
    道砟2.6614320.858
    黏土2.70117822.21.20742.1022.40
    煤渣1.227150.707
    下载: 导出CSV

    表  2  格栅参数

    Table  2.   Physical and technical properties of geogrid

    格栅参数数值
    孔径形式双向孔径 55 mm × 55 mm
    材料聚丙烯
    2% 应变时抗拉强度/(kN•m−111
    5% 应变时抗拉强度/(kN•m−115
    峰值抗拉强度/(kN•m−130
    屈服点伸长率/%13
    下载: 导出CSV

    表  3  试样设置情况

    Table  3.   Details of experimental specimens

    类型试样编号脏污质种类VCI/%法向压力 σn/kPa
    含格栅 GN1 黏土 0 15、35、55、75
    GN2 20
    GN3 40
    GM1 煤渣 0 15、35、55、75
    GM2 20
    GM3 40
    不含格栅 N1 黏土 0 15、35、55、75
    N2 20
    N3 40
    M1 煤渣 0 15、35、55、75
    M2 20
    M3 40
    下载: 导出CSV
  • [1] 高亮,徐旸,殷浩. 脏污材质对散体道床剪切力学性能影响的试验研究[J]. 北京交通大学学报,2017,41(1): 1-6. doi: 10.11860/j.issn.1673-0291.2017.01.001

    GAO Liang, XU Yang, YIN Hao. Experiment researchof shear behavior of railway ballast influenced by different fouling materials[J]. Journal of Beijing Jiaotong University, 2017, 41(1): 1-6. doi: 10.11860/j.issn.1673-0291.2017.01.001
    [2] INDRARATNA B, NIMBALKAR S S, TENNAKOON N. The behaviour of ballasted track foundations: track drainage and geosynthetic reinforcement[C]//Advances in Analysis, Modeling & Design. Orlando: American Society of Civil Engineers, 2010: 2378-2387.
    [3] SELIG E T, WATERS J M. Track geotechnology and substructure management[M]. London: Thomas Telford, 1994.
    [4] KOOHMISHI M, PALASSI M. Effect of gradation of aggregate and size of fouling materials on hydraulic conductivity of sand-fouled railway ballast[J]. Construction and Building Materials, 2018, 167: 514-523. doi: 10.1016/j.conbuildmat.2018.02.040
    [5] KASHANI H F, HO C L, HYSLIP J P. Fouling and water content influence on the ballast deformation properties[J]. Construction and Building Materials, 2018, 190: 881-895. doi: 10.1016/j.conbuildmat.2018.09.058
    [6] INDRARATNA B, TENNAKOON N C, NIMBALKAR S, et al. Behaviour of clay-fouled ballast under drained triaxial testing[J]. Géotechnique, 2013, 63(5): 410-419.
    [7] NGO N T, INDRARATNA B, RUJIKIATKAMJORN C. Micromechanics-based investigation of fouled ballast using large-scale triaxial tests and discrete element modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(2): 04016089.1-04016089.16.
    [8] SWETA K, HUSSAINI S K K. Behavior evaluation of geogrid-reinforced ballast-subballast interface under shear condition[J]. Geotextiles and Geomembranes, 2019, 47(1): 23-31. doi: 10.1016/j.geotexmem.2018.09.002
    [9] BIABANI M M, INDRARATNA B. An evaluation of the interface behaviour of rail subballast stabilised with geogrids and geomembranes[J]. Geotextiles and Geomembranes, 2015, 43(3): 240-249. doi: 10.1016/j.geotexmem.2015.04.002
    [10] 刘贵宪. 道砟基本力学特性及格栅加固机理研究[D]. 北京: 北京交通大学, 2015.
    [11] CHEN C, MCDOWELL G R, THOM N H. Investigating geogrid-reinforced ballast: experimental pull-out tests and discrete element modelling[J]. Soils and Foundations, 2014, 54(1): 1-11.
    [12] INDRARATNA B, HUSSAINI S K K, VINOD J S. The lateral displacement response of geogrid-reinforced ballast under cyclic loading[J]. Geotextiles and Geomembranes, 2013, 39: 20-29. doi: 10.1016/j.geotexmem.2013.07.007
    [13] INDRARATNA B, NGO N T, RUJIKIATKAMJORN C. Deformation of coal fouled ballast stabilized with geogrid under cyclic load[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1275-1289. doi: 10.1061/(ASCE)GT.1943-5606.0000864
    [14] INDRARATNA B, NGO N T, RUJIKIATKAMJORN C. Behavior of geogrid-reinforced ballast under various levels of fouling[J]. Geotextiles and Geomembranes, 2011, 29(3): 313-322.
    [15] HUANG H, TUTUMLUER E, DOMBROW W. Laboratory characterization of fouled railroad ballast behavior[J]. Transportation Research Record, 2009, 2117: 93-101.
    [16] TUTUMLUER E, KENT P F, DOMBROW W, et al. Laboratory characterization of coal dust fouled ballast behavior[C]//AREMA 2008 Annual Conference & Exposition. Salt Lake City: [s.n.], 2008: 21-24.
    [17] 中华人民共和国铁道部. 铁道碎石道砟: TB/T 20140—2018[S]. 北京: 中国铁道出版社, 2008.
    [18] MCDOWELL G R, HARIRECHE O, KONIETZKY H, et al. Discrete element modelling of geogrid-reinforced aggregates[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2006, 159(1): 35-48. doi: 10.1680/geng.2006.159.1.35
    [19] INDRARATNA B, SU L, RUJIKIATKAMJORN C. A new parameter for classification and evaluation of railway ballast fouling[J]. Canadian Geotechnical Journal, 2011, 48(2): 322-326. doi: 10.1139/T10-066
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  174
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 录用日期:  2021-11-05
  • 修回日期:  2020-07-01
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2020-07-07

目录

    /

    返回文章
    返回