• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

温梯荷载下桥上CRTS 型板式无砟轨道的力学特性

张鹏飞 涂建 桂昊 雷晓燕 刘林芽

张鹏飞, 涂建, 桂昊, 雷晓燕, 刘林芽. 温梯荷载下桥上CRTS Ⅱ型板式无砟轨道的力学特性[J]. 西南交通大学学报, 2021, 56(5): 945-952. doi: 10.3969/j.issn.0258-2724.20200244
引用本文: 张鹏飞, 涂建, 桂昊, 雷晓燕, 刘林芽. 温梯荷载下桥上CRTS 型板式无砟轨道的力学特性[J]. 西南交通大学学报, 2021, 56(5): 945-952. doi: 10.3969/j.issn.0258-2724.20200244
ZHANG Pengfei, TU Jian, GUI Hao, LEI Xiaoyan, LIU Linya. Mechanical Properties of CRTS Ⅱ Slab Ballastless Track on Bridge under Temperature Gradient Loads[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 945-952. doi: 10.3969/j.issn.0258-2724.20200244
Citation: ZHANG Pengfei, TU Jian, GUI Hao, LEI Xiaoyan, LIU Linya. Mechanical Properties of CRTS Slab Ballastless Track on Bridge under Temperature Gradient Loads[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 945-952. doi: 10.3969/j.issn.0258-2724.20200244

温梯荷载下桥上CRTS 型板式无砟轨道的力学特性

doi: 10.3969/j.issn.0258-2724.20200244
基金项目: 国家自然科学基金(51768023);江西省教育厅重点项目(GJJ180290)
详细信息
    作者简介:

    张鹏飞(1975—),男,副教授,研究方向为桥上无缝线路设计理论与关键技术,E-mail:zhangpf4236@163.com

    通讯作者:

    雷晓燕(1956—),男,教授,研究方向为轨道结构动力学、轨道交通环境振动,E-mail:xiaoyanlei2013@163.com

  • 中图分类号: U213.911

Mechanical Properties of CRTS Slab Ballastless Track on Bridge under Temperature Gradient Loads

  • 摘要: 为研究横向和竖向温度梯度对桥上CRTSⅡ型板式无砟轨道纵向力学特性的影响,以梁-板-轨相互作用原理为基础,建立大跨度连续梁桥上 CRTSⅡ型板式无砟轨道无缝线路空间精细化有限元模型,计算了轨道板竖向温度梯度和阴阳面横向温度梯度荷载作用下各轨道和桥梁结构的纵向力和位移. 结果表明:在其他温度荷载相同的情况下,轨道板竖向温度梯度对钢轨的纵向力和位移影响不大;当阴阳面横向温度差为10 ℃时,连续梁上背阴侧钢轨最大的纵向力是向阳侧的1.4倍,背阴侧桥墩最大的纵向力是向阳侧的3.5倍;在横向温度梯度作用下,钢轨纵向附加力由梁体伸缩和扭曲变形共同作用产生,横向温度梯度越大,背阴侧钢轨纵向力、位移最大值越大,向阳侧钢轨纵向力、位移最大值越小;横向和竖向温度梯度的存在不利于轨道和桥梁结构安全使用,因此,在高温差地区设计东西走向的大跨度桥上无缝线路需重点关注钢轨、轨道板和桥梁墩顶受力,并且对无缝线路的横向稳定性进行验算.

     

  • 图 1  WJ-7常阻力扣件阻力-位移曲线

    Figure 1.  Resistance-displacement curves of WJ-7 ordinary resistance fastener

    图 2  简支箱梁截面

    Figure 2.  Cross-section of simply supported bridge

    图 3  空间精细化有限元模型

    Figure 3.  Refined spatial finite element model

    图 4  钢轨伸缩力

    Figure 4.  Expansion-contraction force of rails

    图 5  不同工况钢轨纵向力和位移

    Figure 5.  Longitudinal force and displacement of rails under different conditions

    图 6  不同工况轨道板上、下表面应力

    Figure 6.  Upper and lower surface stress of track slab under different conditions

    图 7  不同工况底座板上、下表面应力

    Figure 7.  Upper and lower surface stress of bed plate under different conditions

    图 8  不同工况固定支座墩台顶纵向力和位移

    Figure 8.  Longitudinal displacement of fixed pier and abutment top under different conditions

    图 9  轨道和桥梁结构变形

    Figure 9.  Deformation diagram of track and bridge structure

    表  1  竖向温度梯度作用下结构纵向力最大值

    Table  1.   Maximum longitudinal forces of structure under vertical temperature gradient

    温度梯度/(℃•m−1Fr/kNStsu/MPaStsl/MPaΔts/MPaSbpu/MPaSbpl/MPaΔbp/MPaFa/kNFp/kN
    5042.653−26.098−18.250−12.713−12.218−15.363−7.330−300−166
    7042.660−26.211−16.752−14.339−12.280−15.397−7.324−300−166
    9042.666−26.324−15.254−15.964−12.342−15.431−7.317−300−166
    下载: 导出CSV

    表  2  竖向温度梯度下结构纵向位移最大值

    Table  2.   Maximum longitudinal displacements of structure under vertical temperature gradient mm

    温度梯度/(℃•m−1DrDtsuΔrtsDbplDbΔbpbDaDp
    501.601.630.241.6258.49−57.19−1.00−1.36
    701.601.630.241.6258.49−57.19−1.00−1.36
    901.601.630.241.6258.49−57.19−1.00−1.36
    下载: 导出CSV

    表  3  阴阳面横向温度梯度荷载工况

    Table  3.   Transverse temperature gradient load condition of southern and northern surfaces

    结构工况 1工况 2无温差
    向阳侧背阴侧向阳侧背阴侧
    轨道板面5040504550
    砂浆层3525353035
    底座板3525353035
    梁体3020302530
    下载: 导出CSV

    表  4  横向温度梯度荷载下结构纵向力最大值

    Table  4.   Maximum longitudinal forces of structure under transverse temperature gradient load

    工况Fr/kNStsu/MPaStsl/MPaSbpu/MPaSbpl/MPaFa/kNFp/kN
    工况 1 向阳侧 37.754 −26.317 −18.297 −13.274 −16.185 −531 −84.8
    工况 1 背阴侧 51.342 −18.680 −13.677 −8.288 −9.377 −84 −296.0
    工况 2 向阳侧 39.805 −26.001 −18.277 −8.804 −15.648 −438 −126.0
    工况 2 背阴侧 46.787 −22.188 −15.995 −9.947 −12.190 −213 −238.0
    无温差 42.653 −26.098 −18.250 −12.218 −15.363 −300 −166.0
    下载: 导出CSV

    表  5  横向温度梯度荷载下结构纵向位移最大值

    Table  5.   Maximum longitudinal displacements of structure under transverse temperature gradient load mm

    工况DrDtsuΔrtsDbplDbΔbpbDaDp
    工况 1 向阳侧1.161.170.211.1649.46−48.76−1.77−2.12
    工况 1 背阴侧1.962.010.262.0047.42−45.60−0.28−1.48
    工况 2 向阳侧1.361.380.221.3753.95−52.96−1.46−1.79
    工况 2 背阴侧1.761.800.211.7952.94−51.39−0.71−1.19
    无温差1.601.630.241.6258.49−57.19−1.00−1.36
    下载: 导出CSV
  • 赵国堂,高亮,赵磊,等. CRTS Ⅱ型板式无砟轨道板下离缝动力影响分析及运营评估[J]. 铁道学报,2017,39(1): 1-10.

    ZHAO Guotang, GAO Liang, ZHAO Lei, et al. Analysis of dynamic effect of gap under CRTS Ⅱ track slab and operation evaluation[J]. Journal of the China Railway Society, 2017, 39(1): 1-10.
    LIU Xueyi, ZHAO Pingrui, DAI Feng. Advances in design theories of high-speed railway ballastless tracks[J]. Journal of Modern Transportation, 2011, 19(3): 154-162. doi: 10.1007/BF03325753
    刘钰,赵国堂. CRTSⅡ型板式无砟轨道结构层间早期离缝研究[J]. 中国铁道科学,2013,34(4): 1-7.

    LIU Yu, ZHAO Guotang. Analysis of early gap between layers of CRTS Ⅱ slab ballastless track structure[J]. China Railway Science, 2013, 34(4): 1-7.
    刘学毅,李佳莉,康维新,等. 无砟轨道温度简便计算及极端天气影响分析[J]. 西南交通大学学报,2017,52(6): 1037-1045,1060. doi: 10.3969/j.issn.0258-2724.2017.06.001

    LIU Xueyi, LI Jiali, KANG Weixin, et al. Simplified calculation of temperature in concrete slabs of ballastless track and influence of extreme weather[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1037-1045,1060. doi: 10.3969/j.issn.0258-2724.2017.06.001
    欧祖敏,孙璐. 基于概率需求的高速铁路无砟轨道板温度荷载取值研究Ⅱ:温度梯度作用[J]. 铁道学报,2018,40(1): 80-86. doi: 10.3969/j.issn.1001-8360.2018.01.013

    OU Zumin, SUN Lu. Value of temperature loads on probability demand for ballastless track slab Ⅱ:thermal gradient actions[J]. Journal of the China Railway Society, 2018, 40(1): 80-86. doi: 10.3969/j.issn.1001-8360.2018.01.013
    曾志平,孟晓白,宋善义,等. 线路环境对双块式无砟轨道道床板温度场影响[J]. 铁道工程学报,2018,35(3): 12-17,37. doi: 10.3969/j.issn.1006-2106.2018.03.003

    ZENG Zhiping, MENG Xiaobai, SONG Shanyi, et al. The influence of track line environment on temperature field of double-block ballastless track bed slab[J]. Journal of Railway Engineering Society, 2018, 35(3): 12-17,37. doi: 10.3969/j.issn.1006-2106.2018.03.003
    ZENG Zhiping, HUANG Zhibin, YIN Huatuo, et al. Influence of track line environment on the temperature field of a double-block ballastless track slab[J]. Advances in Mechanical Engineering, 2018, 10(12): 1-16.
    曲村, 高亮, 乔神路. 高速铁路长大桥梁CRTSⅠ型板式无砟轨道无缝线路力学特性分析[J]. 铁道标准设计, 2011(4): 12-16.
    蔡小培,高亮,孙汉武,等. 桥上纵连板式无砟轨道无缝线路力学性能分析[J]. 中国铁道科学,2011,32(6): 28-33.

    CAI Xiaopei, GAO Liang, SUN Hanwu, et al. Analysis on the mechanical properties of longitudinally connected ballastless track continuously welded rail on bridge[J]. China Railway Science, 2011, 32(6): 28-33.
    曲村,高亮,乔神路,等. 高速铁路长大桥梁CRTSⅠ型双块式无砟轨道无缝线路影响因素分析[J]. 铁道工程学报,2011,28(3): 46-51,63. doi: 10.3969/j.issn.1006-2106.2011.03.009

    QU Cun, GAO Liang, QIAO Shenlu, et al. Analysis of influence factors on CRTS Ⅰ double-block ballastless track CWR on long-span bridge of high-speed railway[J]. Journal of Railway Engineering Society, 2011, 28(3): 46-51,63. doi: 10.3969/j.issn.1006-2106.2011.03.009
    谢铠泽,王平,徐井芒,等. 桥上单元板式无砟轨道无缝线路的适应性[J]. 西南交通大学学报,2014,49(4): 649-655. doi: 10.3969/j.issn.0258-2724.2014.04.014

    XIE Kaize, WANG Ping, XU Jingmang, et al. Adaptability of continuous welded rail of unit slab non-ballast track on bridges[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 649-655. doi: 10.3969/j.issn.0258-2724.2014.04.014
    闫斌,戴公连. 高速铁路斜拉桥上无缝线路纵向力研究[J]. 铁道学报,2012,34(3): 83-87. doi: 10.3969/j.issn.1001-8360.2012.03.014

    YAN Bin, DAI Gonglian. CWR longitudinal force of cable-stayed bridge of high-speed railway[J]. Journal of the China Railway Society, 2012, 34(3): 83-87. doi: 10.3969/j.issn.1001-8360.2012.03.014
    DAI Gonglian, YAN Bin. Longitudinal forces of continuously welded track on high-speed railway cable-stayed bridge considering impact of adjacent bridges[J]. Journal of Central South University, 2012, 19(8): 2348-2353. doi: 10.1007/s11771-012-1281-1
    DAI Gonglian, LIU Wenshuo. Applicability of small resistance fastener on long-span continuous bridges of high-speed railway[J]. Journal of Central South University, 2013, 20(5): 1426-1433. doi: 10.1007/s11771-013-1631-7
    戴公连,葛浩,刘文硕,等. 实测温度下大跨度桥上纵连无砟轨道受力研究[J]. 铁道工程学报,2017,34(5): 26-31,93. doi: 10.3969/j.issn.1006-2106.2017.05.006

    DAI Gonglian, GE Hao, LIU Wenshuo, et al. Analysis of longitudinally connected ballastless track on the high-speed railway long-span bridge based on the actual measured temperature[J]. Journal of Railway Engineering Society, 2017, 34(5): 26-31,93. doi: 10.3969/j.issn.1006-2106.2017.05.006
    DAI Gonglian, GE Hao, LIU Wenshuo, et al. Interaction analysis of continuous slab track (CST) on long-span continuous high-speed rail bridges[J]. Structural Engineering and Mechanics, 2017, 63(6): 713-723.
    曲村. 高速铁路长大桥梁无砟轨道无缝线路设计理论及方法研究[D]. 北京: 北京交通大学, 2013.
    雷笑,叶见曙,王毅. 日照作用下混凝土箱梁的温差代表值[J]. 东南大学学报(自然科学版),2008,38(6): 1105-1109.

    LEI Xiao, YE Jianshu, WANG Yi. Representative value of solar thermal difference effect on PC box-girder[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(6): 1105-1109.
    欧祖敏,孙璐,程群群. 高速铁路无砟轨道温度场简化计算方法[J]. 浙江大学学报(工学版),2015,49(3): 482-487.

    OU Zumin, SUN Lu, CHENG Qunqun. Simplified calculation of temperature field in high-speed railway ballastless track structure[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(3): 482-487.
    国家铁路局. 高速铁路设计规范: TB 10621—2014[S]. 北京: 中国铁道出版社, 2015.
    CHEN Ji, HU Zeyong, DOU Shun, et al. Yin-Yang slope problem along Qinghai-Tibetan lines and its radiation mechanism[J]. Cold Regions Science and Technology, 2006, 44(3): 217-224. doi: 10.1016/j.coldregions.2005.12.001
    中国第四勘察设计院集团有限公司. 铁路无缝线路设计规范: TB 10015—2012[S]. 北京: 中国铁道出版社, 2013.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  621
  • HTML全文浏览量:  221
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-27
  • 修回日期:  2020-08-10
  • 网络出版日期:  2021-05-27
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回