• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

地震动非参数化谱反演可靠性分析

王宏伟 任叶飞 温瑞智 周影

王宏伟, 任叶飞, 温瑞智, 周影. 地震动非参数化谱反演可靠性分析[J]. 西南交通大学学报, 2022, 57(1): 182-190. doi: 10.3969/j.issn.0258-2724.20200241
引用本文: 王宏伟, 任叶飞, 温瑞智, 周影. 地震动非参数化谱反演可靠性分析[J]. 西南交通大学学报, 2022, 57(1): 182-190. doi: 10.3969/j.issn.0258-2724.20200241
WANG Hongwei, REN Yefei, WEN Ruizhi, ZHOU Ying. Reliability Analysis on Non-Parametric Spectral Inversion of Seismic Ground Motion[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 182-190. doi: 10.3969/j.issn.0258-2724.20200241
Citation: WANG Hongwei, REN Yefei, WEN Ruizhi, ZHOU Ying. Reliability Analysis on Non-Parametric Spectral Inversion of Seismic Ground Motion[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 182-190. doi: 10.3969/j.issn.0258-2724.20200241

地震动非参数化谱反演可靠性分析

doi: 10.3969/j.issn.0258-2724.20200241
基金项目: 国家自然科学基金(51808514, 51878632);黑龙江省自然科学基金(YQ2019E036)
详细信息
    作者简介:

    王宏伟(1990—), 男, 助理研究员, 博士, 研究方向为工程地震, E-mail:whw1990413@163.com

    通讯作者:

    任叶飞(1983—), 男, 研究员, 博士, 研究方向为工程地震, E-mail:renyefei@iem.ac.cn

  • 中图分类号: P315

Reliability Analysis on Non-Parametric Spectral Inversion of Seismic Ground Motion

  • 摘要:

    非参数化谱反演是研究地震动震源、传播路径及场地效应的关键技术,反演的可靠性对地震震源物理的准确认识及地震危险性的有效预测具有重要影响. 为分析震源和场地项权衡的约束条件、单步法/两步法的选择、震源参数估计等关键环节对反演可靠性的影响,以2016—2017年意大利中部地震序列的地震动谱反演为例,给出确保反演可靠性的合理建议. 研究结果表明:参考场地的选择显著影响反演可靠性,在综合考虑场地地质资料、观测记录水平/垂直(H/V)谱比等初选基础上,根据震源谱、震源参数等的试算结果最终确定合适的参考场地;非参数化谱反演的单步法和两步法的选取显著影响远场高频路径衰减的反演结果,一定程度上影响高频震源谱,对震源参数估计结果的影响较小,由于两步法的路径衰减项易被场地项干扰,单步法是最佳选择;利用网格搜索方法估计反演震源谱的矩震级、拐角频率和高频衰减参数时,为尽可能避免拐角频率和高频衰减参数之间的权衡,应利用中低频震源谱估计矩震级和拐角频率,当拐角频率大于0.5 Hz时,可不考虑矩震级和拐角频率的权衡对其估计的影响,对于拐角频率较小且震级较大地震可直接利用地震矩计算结果,以提高震源参数估计的可靠性.

     

  • 图 1  7个台站的H/V谱比曲线

    Figure 1.  The horizontal-to-vertical spectral ratios at seven stations

    图 2  6个典型地震的加速度震源谱反演结果

    Figure 2.  The inverted acceleration source spectra of six typical earthquakes

    图 3  地震震源参数 ( Mw, fc and Δσ ) 及高频衰减参数 ( κ ) 估计值

    Figure 3.  Estimated source parameters (Mw, fc and Δσ) and high-frequency decay parameters (κ)

    图 4  基于两步法和单步法反演路径衰减的差异

    Figure 4.  Differences between path attenuations inverted by the two-step and one-step methods

    图 5  单步法和两步法反演给出的6次典型地震的加速度震源谱

    Figure 5.  Acceleration source spectra for six typical events derived from the one-step and two-step methods

    图 6  基于两步法和单步法的震源参数(Mwfc、ΔσEs)及高频衰减参数(κ)估计值的差异

    Figure 6.  Differences in estimated source parameters (Mw, fc, Δσ and Es) and high-frequency decay parameter (κ) by the one-step and two-step methods

    图 7  震源谱特征参数之间的权衡

    Figure 7.  Trade-offs among those parameters describing source spectra

    图 8  拟合方差随fc变化

    Figure 8.  Fitting variance vs. fc

  • [1] 华卫,陈章立,郑斯华. 2008年汶川8.0级地震序列震源参数分段特征的研究[J]. 地球物理学报,2009,52(2): 365-371.

    HUA Wei, CHEN Zhangli, ZHENG Sihua. A study on segmentation characteristics of aftershock source parameters of Wenchuan M8.0 earthquake in 2008[J]. Chinese Journal of Geophysics, 2009, 52(2): 365-371.
    [2] OTH A, BINDI D, PAROLAI S, et al. Spectral analysis of K-net and KiK-net data in Japan,Part Ⅱ:on attenuation characteristics,source spectra,and site response of borehole and surface stations[J]. Bulletin of the Seismological Society of America, 2011, 102(2): 667-687.
    [3] PACOR F, SPALLAROSSA D, OTH A, et al. Spectral models for ground motion prediction in the L’Aquila region (central Italy):Evidence for stress-drop dependence on magnitude and depth[J]. Geophysical Journal International, 2016, 204(2): 716-737. doi: 10.1093/gji/ggv448
    [4] WANG Hongwei, REN Yefei, WEN Ruizhi, et al. Breakdown of earthquake self-similar scaling and source rupture directivity in the 2016—2017 central Italy seismic sequence[J]. Journal of Geophysical Research: Solid Earth, 219, 124(4): 3898-3917.
    [5] 赵翠萍,陈章立,华卫,等. 中国大陆主要地震活动区中小地震震源参数研究[J]. 地球物理学报,2010,54(6): 1478-1489.

    ZHAO Cuiping, CHEN Zhangli, HUA Wei, et al. Study on source parameters of small to moderate earthquakes in the main seismic active regions,China mainland[J]. Chinese Journal Geophysics, 2010, 54(6): 1478-1489.
    [6] AMIR S B, FARHAD S, SURYA P, et al. Estimation of geometrical spreading,quality factor and Kappa in the Zagros region[J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106110.1-106110.11.
    [7] FU L, LI X J, WANG F, et al. A study of site response and regional attenuation in the Longmen Shan region,eastern Tibetan plateau,SW China,from seismic recordings using the generalized inversion method[J]. Journal of Asian Earth Sciences, 2019, 181: 103887.1-103887.11.
    [8] 李红玉,于湘伟,章文波. 场地效应研究的传递台站线性反演法——以芦山地震为例[J]. 地球物理学报,2017,60(1): 198-211.

    LI Hongyu, YU Xiangwei, ZHANG Wenbo. Site effects estimation by transfer-station generalized inversion method — a case study of the Lushan earthquake[J]. Chinese Journal of Geophysics, 2017, 60(1): 198-211.
    [9] BINDI D, SPALLAROSSA D, PACOR F. Between-event and between-station variability observed in the Fourier and response spectra domains:comparison with seismological models[J]. Geophysical Journal International, 2017, 210(2): 1092-1104. doi: 10.1093/gji/ggx217
    [10] CASTRO R R, ANDERSON J G, SINGH S K. Site response,attenuation,and source spectra of S waves along the Guerrero,Mexico subduction zone[J]. Bulletin of the Seismological Society of America, 1990, 80(6): 1481-1503.
    [11] OTH A, KAISER A E. Stress release and source scaling of the 2010—2011 Canterbury,New Zealand earthquake sequence from spectral inversion of ground motion data[J]. Pure and Applied Geophysics, 2014, 171: 2767-2782. doi: 10.1007/s00024-013-0751-1
    [12] BINDI D, KOTHA S R. Spectral decomposition of the engineering strong motion (ESM) flat file:regional attenuation,source scaling and arias stress drop[J]. Bulletin of Earthquake Engineering, 2020, 18(3): 2581-2606. doi: 10.1007/s10518-020-00796-1
    [13] WANG H W, REN Y F, WEN R Z. Source parameters,path attenuation and site effects from strong-motion recordings of the Wenchuan aftershocks (2008—2013) using a non-parametric generalized inversion technique[J]. Geophysical Journal International, 2018, 212(2): 872-890. doi: 10.1093/gji/ggx447
    [14] BRUNE J N. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of Geophysical Research, 1970, 75(26): 4997-5009. doi: 10.1029/JB075i026p04997
    [15] YOSHIMITSU N, ELLSWORTH W L, BEROZA G C. Robust stress drop estimates of potentially induced earthquakes in Oklahoma:evaluation of empirical Green’s function[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(6): 5854-5866. doi: 10.1029/2019JB017483
    [16] ANDREWS D J. Objective determination of source parameters and similarity of earthquakes of different size[J]. Geophysical Monographs Series, 1986, 37: 259-267.
    [17] BINDI D, CASTRO R R, FRANCESCHINA G, et al. The 1997—1998 Umbria−Marche sequence (central Italy):source,path,and site effects estimated from strong motion data recorded in the epicentral area[J]. Journal of Geophysical Research, 2004, 109(B4): 1-17.
    [18] TSURUGI M, TANAKA R, KAGAWA T, et al. High-frequency spectral decay characteristics of seismic records of inland crustal earthquakes in Japan:evaluation of the fmax and κ models[J]. Bulletin of the Seismological Society of America, 2020, 110(2): 452-470.
    [19] ALLMANN B P, SHEARER P M. Global variations of stress drop for moderate to large earthquakes[J]. Journal of Geophysical Research, 2009, 114(B1): 1-22.
    [20] ANDERSON J G, HOUGH S E. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[J]. Bulletin of the Seismological Society of America, 1984, 74(5): 1969-1993.
  • 加载中
图(9)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  180
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-26
  • 修回日期:  2020-06-24
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2020-07-07

目录

    /

    返回文章
    返回