Thermo-Electric Coupling Simulation for 10 kV AC XLPE Cable in DC Operation
-
摘要:
为了研究电缆在不同敷设方式和直流拓扑结构时的直流运行参数,以10 kV交流配电网中广泛使用的三芯交联聚乙烯(cross-linked polyethylene,XLPE)电缆为例,通过有限元仿真软件建立电缆温度场、流场和电场耦合仿真模型,对直埋敷设、排管敷设和沟槽敷设下电缆分别以双极式、单极式、三线双极式(three-wire bipole structure-high voltage direct current,TWBS-HVDC) 3种直流拓扑结构运行时的温度分布、流场分布和暂稳态电场分布进行了仿真分析. 结果表明:在相同敷设方式下,电缆以三线双极式运行时的直流载流量最大,而以单极式运行时的直流载流量最小;10 kV交流电缆在3种敷设方式和3种直流拓扑结构下的直流电压等级均可取10 kV,且留有一定的电压裕度;电缆在沟槽敷设和单极式运行条件下的最大直流输送功率最大,为13.2 MW,而在排管敷设和双极式运行条件下的最大直流输送功率最小,为8.7 MW;当交流电缆改为直流运行后,最大输送功率将会有较大的提升.
Abstract:To study the DC operation parameters of the 10 kV AC cable in different laying modes and DC operation topologies, according to the example of the three-core cross-linked polyethylene (XLPE) cable widely used in 10 kV AC distribution network, the temperature field, flow field and electric field coupling simulation models are established through finite element simulation software. The temperature field, the flow field, the steady electric field and the transient electric field are analyzed respectively, in the cases of the cable laid in the soil, pipeline and trench (three laying modes) and operating in the bipole, monopole and triple (three-wire bipole structure-high voltage direct current, TWBS-HVDC) DC operation modes (three DC operation topologies). The results show that for the same laying mode, the TWBS-HVDC has the highest DC ampacity, while the monopole mode has the lowest DC ampacity. The DC voltage levels of the 10 kV AC cable in the three laying modes and three DC operation topologies are 10 kV and leave a certain voltage margin. The cable in the trench and monopole mode has the highest maximum DC transmission power, i.e., 13.2 MW, whereas the cable in the pipeline and bipole mode has the lowest maximum DC transmission power i.e., 8.7 MW. The maximum transmission power of the AC cable will have a significant increase after the cable is converted into DC operation.
-
Key words:
- XLPE cable /
- DC topology /
- cable laying /
- DC power transmission /
- numerical simulation
-
表 1 电缆在排管敷设和沟槽敷设方式下以双极式直流运行时的最大散热功率
Table 1. Maximum heat dissipation power of the cable in the pipeline and trench operating in bipolar DC mode
W 敷设方式 散热方式 热传导 热对流 热辐射 排管敷设 23.26 18.78 21.53 沟槽敷设 25.23 57.38 48.24 表 2 不同直流运行条件下的最大直流运行电压
Table 2. Maximum DC operation voltages in different DC operating conditions
kV 敷设方式 直流拓扑结构 单极式 双极式 TWBS 直埋敷设 10.7 11.1 10.7 排管敷设 10.5 10.8 10.5 沟槽敷设 11.0 11.3 11.0 -
[1] JI Yirun, YUAN Zhichang, ZHAO Jianfeng, et al. Overall control scheme for VSC-based medium-voltage DC power distribution networks[J]. IET Generation Transmission & Distribution, 2018, 12(6): 1438-1445. [2] LIU Ying, CAO Xiaolong, Fu Mingli. The upgrading renovation of an existing XLPE cable circuit by conversion of AC line to DC operation[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1321-1328. doi: 10.1109/TPWRD.2015.2496178 [3] YU J, SMITH K, URIZARBARRENA M, et al. Initial designs for the ANGLE DC project; converting existing AC cable and overhead line into DC operation[C]//13th IET International Conference on AC and DC Power Transmission. Manchester: Institution of Engineering and Technology, 2017: 1-6. [4] NOVAK B, KOLLER L. Current distribution and losses of grouped underground cables[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 1514-1521. doi: 10.1109/TPWRD.2011.2104980 [5] 梁永春. 高压电力电缆温度场和载流量评估研究动态[J]. 高电压技术,2016,42(4): 1142-1150.LIANG Yongchun. Technological development in evaluating the temperature and ampacity of power cables[J]. High Voltage Engineering, 2016, 42(4): 1142-1150. [6] 刘英,肖阳,刘松华. 隧道内电缆集群敷设对载流量的影响研究[J]. 高压电器,2019,55(8): 123-130.LIU Ying, XIAO Yang, LIU Songhua. Influence of cluster laying on permitted current rating of power cables in tunnels[J]. High Voltage Apparatus, 2019, 55(8): 123-130. [7] 郑文坚,牛海清,宋廷汉,等. 基于热场仿真及改进粒子群算法的电缆群负荷优化方法[J]. 高电压技术,2019,45(6): 2010-2016.ZHENG Wenjian, NIU Haiqing, SONG Tinghan, et al. Load optimization method of cluster power cables based on thermal field simulation and modified particle swarm algorithm[J]. High Voltage Engineering, 2019, 45(6): 2010-2016. [8] 胡列翔,欧阳本红,刘宗喜,等. 交流500 kV海底电缆登陆段载流能力提升[J]. 高电压技术,2019,45(11): 3421-3428.HU Liexiang, OUYANG Benhong, LIU Zongxi, et al. Improvement in current carrying capacity of landing section of AC 500 kV submarine cable[J]. High Voltage Engineering, 2019, 45(11): 3421-3428. [9] 刘士利,李宁,蔡国伟,等. 66kV交流交联聚乙烯电缆线路改为直流运行的直流载流量[J]. 高电压技术,2017,43(5): 1664-1669.LIU Shili, LI Ning, CAI Guowei, et al. DC ampacity of 66 kV AC XLPE cable line transformed into DC operation[J]. High Voltage Engineering, 2017, 43(5): 1664-1669. [10] 胡列翔,许烽,裘鹏,等. 交流XLPE电缆在两种直流运行方式下的热电耦合仿真[J]. 高电压技术,2019,45(7): 2307-2313.HU Liexiang, XU Feng, QIU Peng, et al. Thermo-electric coupling simulation for AC XLPE cable in two DC operation modes[J]. High Voltage Engineering, 2019, 45(7): 2307-2313. [11] 于竞哲,苏宜靖,周浩,等. 10 kV交流XLPE电缆改为直流运行的温度场和电场仿真分析[J]. 高电压技术,2017,43(11): 3653-3660.YU Jingzhe, SU Yijing, ZHOU Hao, et al. Simulation analysis of temperature field and electric field for 10 kV AC XLPE cable in DC operation[J]. High Voltage Engineering, 2017, 43(11): 3653-3660. [12] 陈向荣,王启隆,于竞哲,等. 10 kV交流XLPE电缆在不同直流拓扑结构和敷设方式下的直流载流量仿真研究[J]. 高电压技术,2021,47(11): 4044-4054. doi: 10.13336/j.1003-6520.hve.20201393CHEN Xiangrong, WANG Qilong, YU Jingzhe, et al. Simulation research on DC ampacity of 10 kV AC XLPE cable Under different DC operation topologies and laying modes[J]. High Voltage Engineering, 2021, 47(11): 4044-4054. doi: 10.13336/j.1003-6520.hve.20201393 [13] SHEKHAR A, KONTOS E, RAMÍREZ-ELIZONDO L, et al. Grid capacity and efficiency enhancement by operating medium voltage AC cables as DC links with modular multilevel converters[J]. International Journal of Electrical Power and Energy Systems, 2017, 93: 479-493. [14] CHEN Xiangrong, YU Jingzhe, ZHOU Hao. Thermo-electric field analysis of AC XLPE cable in monopole,bipole and tripole DC operation modes[J]. IET Generation Transmission & Distribution, 2019, 13(14): 2959-2966. [15] 徐政,许烽. 输电线路交改直的关键技术研究[J]. 高电压技术,2016,42(1): 1-10.XU Zheng, XU Feng. Research on key technologies of AC-to-DC transmission lines conversion[J]. High Voltage Engineering, 2016, 42(1): 1-10. [16] YU Jingzhe, CHEN Xiangrong, MENG Fanbo, et al. Numerical analysis of thermo-electric field for AC XLPE cables with different service times in DC operation based on conduction current measurement[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 900-908. doi: 10.1109/TDEI.2019.008502 [17] 刘子玉. 电气绝缘结构设计原理[M]. 上册. 北京: 机械工业出版社, 1981: 303-305. [18] 梁永春,赵静,闫彩红. 沟槽电缆温度场和载流量的数值计算[J]. 高电压技术,2012,38(11): 3048-3053.LIANG Yongchun, ZHAO Jing, YAN Caihong. Numerical calculation of temperature field and ampacity of power cables in channel[J]. High Voltage Engineering, 2012, 38(11): 3048-3053. [19] ÖHMAN C. Emittansmätningar med AGEMA E-Box[R]. [S.l.]: AGEMA, 1999. [20] 王雅妮,张洪亮,吴建东,等. 不同敷设方式下高压直流电缆温度场与电场仿真计算研究[J]. 绝缘材料,2017,50(7): 71-78.WANG Yani, ZHANG Hongliang, WU Jiandong, et al. Simulation and calculation of temperature field and electric field distribution of HVDC cable under different laying modes[J]. Insulating Materials, 2017, 50(7): 71-78. [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中低压直流配电电压导则: GB/T 35727—2017[S]. 北京: 中国标准出版社, 2017. [22] 朱永华, 吴长顺, 杨娟娟, 等. 额定电压500 kV及以下直流输电用挤包绝缘电力电缆系统技术规范: TICW 7.1—2012[S]. 上海: 国家电线电缆质量监督检验中心, 2012.