• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

半监督卷积神经网络的词义消歧

张春祥 唐利波 高雪瑶

张春祥, 唐利波, 高雪瑶. 半监督卷积神经网络的词义消歧[J]. 西南交通大学学报, 2022, 57(1): 11-17, 27. doi: 10.3969/j.issn.0258-2724.20200105
引用本文: 张春祥, 唐利波, 高雪瑶. 半监督卷积神经网络的词义消歧[J]. 西南交通大学学报, 2022, 57(1): 11-17, 27. doi: 10.3969/j.issn.0258-2724.20200105
ZHANG Chunxiang, TANG Libo, GAO Xueyao. Word Sense Disambiguation Based on Semi-Supervised Convolutional Neural Networks[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 11-17, 27. doi: 10.3969/j.issn.0258-2724.20200105
Citation: ZHANG Chunxiang, TANG Libo, GAO Xueyao. Word Sense Disambiguation Based on Semi-Supervised Convolutional Neural Networks[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 11-17, 27. doi: 10.3969/j.issn.0258-2724.20200105

半监督卷积神经网络的词义消歧

doi: 10.3969/j.issn.0258-2724.20200105
基金项目: 国家自然科学基金(61502124, 60903082);中国博士后科学基金(2014M560249);黑龙江省自然科学基金(F2015041, F201420);黑龙江省普通高校基本科研业务费专项资金资助(LGYC2018JC014)
详细信息
    作者简介:

    张春祥(1974—),男,教授,博士,研究方向为自然语言处理与计算机图形学,E-mail:z6c6x666@163.com

    通讯作者:

    高雪瑶(1979—),女,教授,博士,研究方向为计算机图形学与自然语言处理,E-mail:xueyao_gao@163.com

  • 中图分类号: TP391.2

Word Sense Disambiguation Based on Semi-Supervised Convolutional Neural Networks

  • 摘要:

    为了解决有标签语料获取困难的问题,提出了一种半监督学习的卷积神经网络(convolutional neural networks, CNN)汉语词义消歧方法. 首先,提取歧义词左右各2个词汇单元的词形、词性和语义类作为消歧特征,利用词向量工具将消歧特征向量化;然后,对有标签语料进行预处理,获取初始化聚类中心和阈值,同时,使用有标签语料对卷积神经网络消歧模型进行训练,利用优化后的卷积神经网络对无标签语料进行语义分类,选取满足阈值条件的高置信度语料添加到训练语料之中,不断重复上述过程,直到训练语料不再扩大为止;最后,使用SemEval-2007:Task#5作为有标签语料,使用哈尔滨工业大学无标注语料作为无标签语料进行实验. 实验结果表明:所提出方法使CNN的消歧准确率提高了3.1%.

     

  • 图 1  特征提取

    Figure 1.  Feature extraction

    图 2  特征矩阵构建过程

    Figure 2.  Construction process of feature matrix

    图 3  softmax层

    Figure 3.  softmax layer

    图 4  不同阈值和类别数下的平均消歧准确率

    Figure 4.  Average disambiguation accuracy at different thresholds and category numbers

    图 5  不同比例和类别数下的平均消歧准确率

    Figure 5.  Average disambiguation accuracy at different ratios and category numbers

    表  1  不同阈值的平均消歧准确率

    Table  1.   Average disambiguation accuracy of different thresholds %

    类别
    数/类
    歧义
    词汇
    T = TmaxT = TminT = TmedT = Tavg
    2表面

    单位
    动摇
    儿女
    镜头
    开通
    气息
    气象
    使
    眼光
    88.3
    88.9
    77.8
    86.7
    90.2
    50.0
    60.5
    64.2
    93.8
    70.2
    76.9
    82.4
    72.2
    94.4
    80.0
    86.3
    57.1
    58.8
    66.5
    87.5
    72.5
    84.6
    76.4
    88.9
    94.4
    93.3
    92.4
    50.0
    58.8
    68.6
    87.5
    76.3
    76.9
    82.4
    88.9
    94.4
    73.3
    96.3
    50.7
    58.8
    67.3
    93.8
    79.6
    84.6
    3
    成立

    旗帜
    日子
    长城
    62.0
    84.6
    66.7
    50.0
    51.6
    68.0
    61.9
    88.2
    66.7
    62.5
    48.4
    68.0
    52.4
    80.8
    55.6
    50.0
    48.4
    68.0
    71.4
    76.9
    77.8
    68.8
    48.4
    80.0
    4

    56.0
    66.7
    61.5
    56.0
    61.1
    64.1
    56.0
    61.1
    64.1
    56.0
    61.1
    53.8
    平均准确率70.771.070.073.2
    下载: 导出CSV

    表  2  不同比率下的平均消歧准确率

    Table  2.   Average disambiguation accuracy of different rates %

    类别
    数/类
    歧义
    词汇
    r = 1r = 5r = 10r = 50r = 100
    2表面

    单位
    动摇
    儿女
    镜头
    开通
    气息
    气象
    使
    眼光
    82.4
    88.9
    94.5
    86.7
    82.2
    64.3
    58.8
    64.2
    93.8
    72.5
    84.6
    82.4
    77.8
    94.5
    80.0
    88.9
    50.0
    58.8
    68.6
    87.5
    72.5
    76.9
    76.0
    83.3
    88.9
    80.0
    84.6
    57.1
    58.8
    66.5
    87.5
    70.2
    76.9
    82.4
    88.9
    83.3
    80.0
    90.7
    50.0
    58.8
    66.5
    87.5
    74.9
    84.6
    88.3
    88.9
    94.5
    86.7
    92.4
    57.1
    58.8
    68.0
    93.8
    75.4
    88.0
    3
    成立

    旗帜
    日子
    长城
    71.4
    76.9
    72.2
    60.5
    48.4
    60.0
    61.9
    84.6
    61.1
    56.3
    48.4
    68.0
    52.4
    76.9
    72.2
    56.3
    51.6
    68.0
    61.9
    76.9
    61.1
    62.5
    48.4
    68.0
    71.4
    80.8
    66.7
    62.5
    51.6
    64.0
    4

    60.0
    55.6
    66.7
    64.0
    72.2
    64.1
    60.0
    67.1
    61.5
    60.0
    50.0
    71.8
    64.0
    66.7
    64.0
    平均准确率72.270.969.870.474.2
    下载: 导出CSV

    表  3  3 组实验的平均消歧准确率

    Table  3.   Average disambiguation accuracy of three groups of experiments %

    类别
    数/类
    歧义词汇DBNCNN本文方法
    2表面

    单位
    动摇
    儿女
    镜头
    开通
    气息
    气象
    使
    眼光
    61.1
    55.6
    58.8
    62.5
    70.0
    53.3
    70.0
    71.4
    62.5
    62.5
    71.4
    82.3
    72.2
    82.3
    93.7
    94.9
    53.3
    85.0
    64.2
    87.5
    81.2
    71.4
    82.4
    88.9
    94.4
    73.3
    96.3
    50.7
    58.8
    67.3
    93.8
    79.6
    84.6
    3
    成立

    旗帜
    日子
    长城
    50.0
    63.3
    50.0
    55.6
    46.9
    38.1
    64.9
    66.6
    55.5
    72.2
    50.0
    71.4
    71.4
    76.9
    77.8
    68.8
    48.4
    80.0
    4

    43.5
    50.0
    30.0
    52.1
    50.0
    70.0
    56.0
    61.1
    53.8
    平均准确率56.371.073.2
    下载: 导出CSV
  • [1] LESK M. Automatic sense disambiguation using machine readable dictionaries: how to tell a pine code from an ice cream[C]//The Figth Annual International Conference on Systems Documentation. Toronto: ACM Press, 1986: 24-26
    [2] 杨安,李素建,李芸. 基于领域知识和词向量的词义消歧方法[J]. 北京大学学报(自然科学版),2017,53(2): 204-210.

    YANG An, LI Sujian, LI Yun. Word sense disambiguation based on domain knowledge and word vector model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(2): 204-210.
    [3] FRANCO R L, IVAN L A , PINTO D, et al. Context expansion for domain-specific word sense disambiguation[J]. IEEE Latin America Transactions, 2015, 13(3): 784-789. doi: 10.1109/TLA.2015.7069105
    [4] 唐共波,于东,荀恩东. 基于知网义原词向量表示的无监督词义消歧方法[J]. 中文信息学报,2015,29(6): 23-29. doi: 10.3969/j.issn.1003-0077.2015.06.004

    TANG Gongbo, YU Dong, XUN Endong. An unsupervised word sense disambiguation method based on sememe vector in HowNet[J]. Journal of Chinese Information Processing, 2015, 29(6): 23-29. doi: 10.3969/j.issn.1003-0077.2015.06.004
    [5] ARAB M, JAHROMI M Z, FAKHRAHMAD S M. A graph-based approach to word sense disambiguation. An unsupervised method based on semantic relatedness[C]//2016 24th Iranian Conference on Electrical Engineering (CEE). Shiraz: IEEE, 2016: 250-255.
    [6] 孟禹光,周俏丽,张桂平,等. 引入词性标记的基于语境相似度的词义消歧[J]. 中文信息学报,2018,32(8): 9-18. doi: 10.3969/j.issn.1003-0077.2018.08.003

    MENG Yuguang, ZHOU Qiaoli, ZHANG Guiping, et al. Word sense disambiguation based on context simila- rity with POS tagging[J]. Journal of Chinese Information Processing, 2018, 32(8): 9-18. doi: 10.3969/j.issn.1003-0077.2018.08.003
    [7] 鹿文鹏,黄河燕,吴昊. 基于领域知识的图模型词义消歧方法[J]. 自动化学报,2014,40(12): 2836-2850.

    LU Wenpeng, HUANG Heyan, WU Hao. Word sense disambiguation with graph model based on domain knowledge[J]. Acta Automatica Sinica, 2014, 40(12): 2836-2850.
    [8] DUQUE A, STEVENSON M, MARTINEZ-ROMO J, et al. Co-occurrence graphs for word sense disambiguation in the biomedical domain[J]. Artificial Intelligence in Medicine, 2018, 87: 9-19. doi: 10.1016/j.artmed.2018.03.002
    [9] TRIPODI R, PELILLO M. A game-theoretic approach to word sense disambiguation[J]. Computational Linguistics, 2017, 43(1): 31-70. doi: 10.1162/COLI_a_00274
    [10] XU Xueping, YU Jianping, PIAO Xiaoyu. Contribution of governors to word sense disambiguation of English preposition[J]. ICIC Express Letters, 2015, 6(3): 723-730.
    [11] 杨陟卓. 基于上下文翻译的有监督词义消歧研究[J]. 计算机科学,2017,44(4): 252-255, 280. doi: 10.11896/j.issn.1002-137X.2017.04.053

    YANG Zhizhuo. Supervised WSD method based on context translation[J]. Computer Science, 2017, 44(4): 252-255, 280. doi: 10.11896/j.issn.1002-137X.2017.04.053
    [12] CARDELLINO C, ALONSO ALEMANY L. Exploring the impact of word embeddings for disjoint semisupervised Spanish verb sense disambiguation[J]. Inteligencia Artificial, 2018, 21(61): 67-81. doi: 10.4114/intartif.vol21iss61pp67-81
    [13] HUANG Z H, CHEN Y D, SHI X D. A novel word sense disambiguation algorithm based on semi-supervised statistical learning[J]. International Journal of Applied Mathematics and Statistics, 2013, 43(13): 452-458.
    [14] MAHMOODVAND M, HOURALI M. Semi-supervised approach for Persian word sense disambiguation[C]// 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE). Mashhad: IEEE, 2017: 104-110.
    [15] 刘子图,全紫薇,毛如柏,等. NT-EP:一种无拓扑结构的社交消息传播范围预测方法[J]. 计算机研究与发展,2020,57(6): 1312-1322. doi: 10.7544/issn1000-1239.2020.20190584

    LIU Zitu, QUAN Ziwei, MAO Rubai, et al. NT-EP:a non-topology method for predicting the scope of social message propogation[J]. Journal of Computer Research and Development, 2020, 57(6): 1312-1322. doi: 10.7544/issn1000-1239.2020.20190584
    [16] 刘勇,谢胜男,仲志伟,等. 社会网中基于主题兴趣的影响最大化算法[J]. 计算机研究与发展,2018,55(11): 2406-2418. doi: 10.7544/issn1000-1239.2018.20170672

    LIU Yong, XIE Shengnan, ZHONG Zhiwei, et al. Topic-interest based influence maximization algorithm in social networks[J]. Journal of Computer Research and Development, 2018, 55(11): 2406-2418. doi: 10.7544/issn1000-1239.2018.20170672
    [17] 薛涛,王雅玲,穆楠. 基于词义消歧的卷积神经网络文本分类模型[J]. 计算机应用研究,2018,35(10): 2898-2903. doi: 10.3969/j.issn.1001-3695.2018.10.004

    XUE Tao, WANG Yaling, MU Nan. Convolutional neural network based on word sense disambiguation for text classification[J]. Application Research of Computers, 2018, 35(10): 2898-2903. doi: 10.3969/j.issn.1001-3695.2018.10.004
    [18] PESARANGHADER A, MATWIN S, SOKOLOVA M, et al. DeepBioWSD:effective deep neural word sense disambiguation of biomedical text data[J]. Journal of the American Medical Informatics Association, 2019, 26(5): 438-446. doi: 10.1093/jamia/ocy189
    [19] BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data[J]. Machine Learning, 2014, 94(2): 233-259. doi: 10.1007/s10994-013-5363-6
    [20] CHEN S J, HUNG C. Word sense disambiguation based sentiment lexicons for sentiment classification[J]. Knowledge-Based Systems, 2016, 110: 224-232. doi: 10.1016/j.knosys.2016.07.030
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  223
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-08-09
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回