• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

矩形混凝土空心墩延性抗震性能试验研究

邵长江 漆启明 韦旺 肖正豪 何俊明 饶钢

邵长江, 漆启明, 韦旺, 肖正豪, 何俊明, 饶钢. 矩形混凝土空心墩延性抗震性能试验研究[J]. 西南交通大学学报, 2022, 57(1): 129-138, 157. doi: 10.3969/j.issn.0258-2724.20200092
引用本文: 邵长江, 漆启明, 韦旺, 肖正豪, 何俊明, 饶钢. 矩形混凝土空心墩延性抗震性能试验研究[J]. 西南交通大学学报, 2022, 57(1): 129-138, 157. doi: 10.3969/j.issn.0258-2724.20200092
SHAO Changjiang, QI Qiming, WEI Wang, XIAO Zhenghao, HE Junming, RAO Gang. Experimental Study on Ductile Seismic Performance of Rectangular Hollow Concrete Columns[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 129-138, 157. doi: 10.3969/j.issn.0258-2724.20200092
Citation: SHAO Changjiang, QI Qiming, WEI Wang, XIAO Zhenghao, HE Junming, RAO Gang. Experimental Study on Ductile Seismic Performance of Rectangular Hollow Concrete Columns[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 129-138, 157. doi: 10.3969/j.issn.0258-2724.20200092

矩形混凝土空心墩延性抗震性能试验研究

doi: 10.3969/j.issn.0258-2724.20200092
基金项目: 国家自然科学基金(51978581,51178395);四川省应用基础研究重点课题(2017JY0059)
详细信息
    作者简介:

    邵长江(1970—),男,副教授,博士, 研究方向为桥梁工程抗震, E-mail:shao_chj@126.com

  • 中图分类号: U448

Experimental Study on Ductile Seismic Performance of Rectangular Hollow Concrete Columns

  • 摘要:

    为深入认识混凝土空心墩地震损伤机理并评估其延性能力,对不同剪跨比、纵筋率及配箍率的方形和矩形空心墩试件开展拟静力加载试验. 观测各墩裂缝分布和损伤情况,分析桥墩的滞回性能、曲率及位移延性,并结合文献试验数据探讨既有塑性铰公式对空心墩顶部位移能力计算的适用性. 研究结果表明:各空心墩试件呈弯曲破坏特征,延性系数均在5.0以上,抗震性能良好;相同剪跨比下空心墩抗剪性能弱于相同外尺寸实心墩;增加纵向率能够适当提升空心墩侧向承载力和极限位移;在低轴压比下,纵筋率和箍筋用量对空心墩位移延性系数的影响规律不明显;空心墩塑性铰长度随剪跨比、纵筋强度或直径、轴压比的增加而提高,随混凝土强度的增加而降低,而配箍率的影响不显著;Mander、孙治国和JRA塑性铰模型预测值与试验值误差不超过5%,其中Mander公式计算效果最佳,可用于评估空心墩等效塑性铰长度;规范中较多采用的Paulay-Priestley模型高估了空心墩塑性铰长度,会使得桥墩抗震设计偏于不安全.

     

  • 图 1  桥墩尺寸及配筋

    Figure 1.  Size and bar arrangement of bridge piers

    图 2  试验装置和加载现场

    Figure 2.  Test setup and loading protocol

    图 3  D2墩底(W侧)裂缝发展过程

    Figure 3.  Crack evolution of specimen D2 at pier foot (W side)

    图 4  墩身典型裂缝分布

    Figure 4.  Typical crack distribution of specimens

    图 5  试件D1和D2滞回曲线

    Figure 5.  Hysteretic curves of specimens D1 and D2

    图 6  空心墩骨架曲线比较

    Figure 6.  Comparison of skeleton curves of hollow piers

    图 7  部分空心墩平均曲率分布

    Figure 7.  Average curvature distribution of some hollow piers

    图 8  各因素对空心墩位移延性系数的影响

    Figure 8.  The effects of influencing factors on the displacement ductility factor of hollow piers

    图 9  各因素对空心墩塑性铰长度的影响

    Figure 9.  The effects of influencing factors on the plastic hinge length of hollow piers

    图 10  空心墩塑性铰长度计算值与试验值的比较

    Figure 10.  Comparison between calculated and measured plastic hinge lengths for hollow columns

    表  1  桥墩模型设计参数

    Table  1.   Design parameters of pier samples

    桥墩类型试件
    名称
    L/mL/hρl/%纵筋布置ρs/%s/mm
    方形实心墩 A2 2.95 5.9 1.79 20ϕ16 + 4ϕ12 2.35 110
    方形空心墩 D1 1.95 3.9 2.12 20ϕ12 + 8ϕ16 2.24 90
    D2 2.95 5.9 2.12 20ϕ12 + 8ϕ16 2.24 90
    D3 3.95 7.9 2.12 20ϕ12 + 8ϕ16 2.24 90
    E1 2.95 5.9 2.12 20ϕ12 + 8ϕ16 3.10 65
    E2 2.95 5.9 2.12 20ϕ12 + 8ϕ16 1.34 150
    F1 2.95 5.9 1.87 16ϕ12 + 8ϕ16 2.24 90
    F2 2.95 5.9 2.81 24ϕ12 + 12ϕ16 2.24 90
    矩形空心墩 G1 1.95 3.9 2.15 20ϕ12 + 16ϕ16 2.13 100
    G2 2.95 5.9 2.15 20ϕ12 + 16ϕ16 2.13 100
    G3 3.95 7.9 2.15 20ϕ12 + 16ϕ16 2.13 100
    H1 2.95 5.9 2.15 20ϕ12 + 16ϕ16 3.04 70
    H2 2.95 5.9 2.15 20ϕ12 + 16ϕ16 1.42 150
    I1 2.95 5.9 1.63 26ϕ12 + 6ϕ16 2.13 100
    I2 2.95 5.9 2.69 32ϕ12 + 16ϕ16 2.13 100
    下载: 导出CSV

    表  2  延性系数和塑性铰长度实测值

    Table  2.   Measured ductility factors and plastic hinge length

    试件Δy /mmΦy/( × 10−3 m−1)Δu /mmΦu/m−1延性系数 μΔLp /mm
    D1 15.6 12.30 90.0 0.180 5.8 242.0
    D2 20.8 7.17 148.0 0.167 7.1 283.0
    D3 24.7 4.75 160.0 0.104 6.5 362.0
    E1 19.6 6.76 132.0 0.152 6.7 275.0
    E2 16.9 5.83 130.0 0.166 7.7 250.0
    F1 17.3 5.96 132.0 0.154 7.6 276.0
    F2 20.1 6.93 154.0 0.149 7.7 340.0
    G1 18.6 14.70 113.6 0.215 6.1 261.0
    G2 29.2 10.10 148.7 0.166 5.1 273.0
    G3 29.0 5.58 181.3 0.134 6.3 314.0
    H1 26.2 9.03 149.7 0.161 5.7 289.0
    H2 20.5 7.07 131.1 0.151 6.4 274.0
    I1 24.2 8.34 137.7 0.178 5.7 237.0
    I2 30.4 10.50 168.6 0.190 5.5 274.0
    下载: 导出CSV

    表  3  等效塑性铰计算模型

    Table  3.   Equivalent plastic hinge length models

    编号来源计算式
    M1 Mander[17] (1983年) $ {L_{\text{p}}} = 0.06L + 32\sqrt {{d_{\text{b}}}} $
    M2 Priestley-Park[16] (1987年) ${L_{\text{p}}} = 0.08L + 6{d_{\text{b}}}$
    M3 Paulay-Priestley[18] (1992年),
    Caltrans[19] (2006年)
    ${L_{\text{p}}} = 0.08L + 0.022{f_{\text{y}}}{d_{\text{b}}} \geqslant 0.044{f_{\text{y}}}{d_{\text{b}}}$
    M4 Watson-Park[20](1994年) ${L_{\rm{p} } } = h\left( {1 + 2.8\mathop P\nolimits_{\rm{u} } /\left( {{\varphi \mathop f\nolimits{'}}_{\rm{c} } {A_{\rm{g} } } } \right)} \right)$
    M5 Berry[21](2008年) ${L_p} = 0.05L + 0.1{ { {f_{\text{y} } }{d_{\text{b} } } } \mathord{\left/ {\vphantom { { {f_{\text{y} } }{d_{\text{b} } } } {\sqrt { { {f'}_{\text{c} } } } } } } \right. } {\sqrt { { {f}'_{\text{c} } } } } }$
    M6 孙治国[22] (2011年) $\begin{gathered} {L_{\rm{p} } }{ { = } }0.10L - 0.165h + 7.32{d_{\rm{b} } }, \quad 0.2h \leqslant {L_{\rm{p} } } \leqslant 0.7h \end{gathered}$
    M7 JRA[23] (2002年) $\begin{gathered} {L_{\rm{p} } } = 0.2L - 0.1h, \quad 0.1h \leqslant {L_{\rm{p} } } \leqslant 0.5h \end{gathered}$
    M8 Eurocode 8[24](2005年) ${L_{\text{p}}} = 0.1L + 0.015{f_{\text{y}}}{d_{\text{b}}}$
    M9 《细则》[2](2008年) $\begin{array}{l}{L_{ {\rm{p1} } } } = 0.08L + 0.022{f_{\rm{y} } }{d_{\rm{b} } } \geqslant 0.044{f_{\rm{y} } }{d_{\rm{b} } },\; {L_{ {\rm{p} }2} } = \dfrac{2}{3}h,\; {L_{\rm{p} } } = \min \left\{ { {L_{ {\rm{p} }1} },\; {L_{ {\rm{p} }2} }\left. {} \right\} } \right.\end{array}$
    下载: 导出CSV

    表  4  文献中试件参数及Lp

    Table  4.   Parameters and Lp of specimens in literature

    编号来源试件ρl
    /%
    fy
    /MPa
    ρs
    /%
    fc'
    /MPa
    ημΔLp/mm
    1 文献[17] A 1.55 335 2.0 30.0 0.10 8.0 278
    2 C 1.55 335 3.1 29.0 0.30 8.0 300
    3 D 1.55 335 2.0 29.0 0.30 6.0 308
    4 文献[25] NB4 2.13 460 30.1 0.09 6.3 328
    5 NA8 2.13 460 24.6 0.11 6.6 309
    6 NB8 2.13 460 24.6 0.11 6.3 175
    7 HA8 2.13 460 35.8 0.06 7.2 143
    8 HB8 2.13 460 35.8 0.06 7.1 151
    9 文献[9] No.2 1.92 330 1.91 34.0 0.08 8.9 232
    10 No.3 1.92 330 1.01 34.0 0.08 8.1 209
    11 文献[11] 405 1.93 374 1.08 43.5 0.10 5.9 177
    12 805 1.93 374 1.08 43.5 0.10 5.4 228
    13 文献[14] S13-NS 1.40 385 3.5 28.2 0.10 3.5 210
    14 S13-EW 1.40 385 3.5 28.2 0.10 5.5 260
    15 S14-NS 2.10 385 3.5 28.2 0.10 5.7 240
    16 S14-EW 2.10 385 3.5 28.2 0.10 5.2 190
    17 S15-NS 1.40 385 3.5 28.2 0.20 4.4 230
    18 S15-EW 1.40 385 3.5 28.2 0.20 3.8 260
    19 S16-NS 2.10 385 3.5 28.2 0.20 4.4 270
    20 S16-EW 2.10 385 3.5 28.2 0.20 3.8 210
    21 S17-NS 2.10 385 2.5 28.2 0.10 4.2 220
    22 S17-EW 2.10 385 2.5 28.2 0.10 3.7 250
    下载: 导出CSV
  • [1] 宗周红,夏坚,徐绰然. 桥梁高墩抗震研究现状及展望[J]. 东南大学学报(自然科学版),2013,43(2): 445-452.

    ZONG Zhouhong, XIA Jian, XU Chaoran. Seismic study of high piers of large-span bridges:an overview and research development[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(2): 445-452.
    [2] 中华人民共和国交通运输部. 公路桥梁抗震设计细则: JTG/TB 02-01—2008[S]. 北京: 人民交通出版社, 2008.
    [3] 中华人民共和国铁道部. 铁路工程抗震设计规范: GB 50111—2006[S]. 北京: 中国计划出版社, 2009.
    [4] 孙治国,王东升,李宏男,等. 钢筋混凝土空心桥墩应用及抗震性能综述[J]. 交通运输工程学报,2013,13(3): 22-32. doi: 10.3969/j.issn.1671-1637.2013.03.004

    SUN Zhiguo, WANG Dongsheng, LI Hongnan, et al. Application of RC hollow bridge pier and review of seismic behavior research[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 22-32. doi: 10.3969/j.issn.1671-1637.2013.03.004
    [5] MANDER J B, PRIESTLEY M J N, PARK R. Behavior of ductile hollow reinforced concrete columns[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1983, 16(4): 273-290. doi: 10.5459/bnzsee.16.4.273-290
    [6] YEH Y K, MO Y L, YANG C Y. Full-scale tests on rectangular hollow bridge piers[J]. Materials and Structures, 2002, 35(2): 117-125.
    [7] ACI committee. Building code requirements for reinforced concrete: ACI 318-95[S]. Detroit: American Concrete Institute, 1995.
    [8] MO Y L, NIEN I C. Seismic performance of hollow high-strength concrete bridge columns[J]. Journal of Bridge Engineering, 2002, 7(6): 338-349. doi: 10.1061/(ASCE)1084-0702(2002)7:6(338)
    [9] 宋晓东. 桥梁高墩延性抗震性能的理论和试验研究[D]. 上海: 同济大学, 2002.
    [10] 杜修力,陈明琦,韩强. 钢筋混凝土空心桥墩抗震性能试验研究[J]. 振动与冲击,2011,30(11): 254-259. doi: 10.3969/j.issn.1000-3835.2011.11.051

    DU Xiuli, CHEN Mingqi, HAN Qiang. Experimental evaluation of seismic performance of reinforced concrete hollow bridge columns[J]. Journal of Vibration and Shock, 2011, 30(11): 254-259. doi: 10.3969/j.issn.1000-3835.2011.11.051
    [11] 罗征,李建中. 低周往复荷载下空心矩形墩抗震性能试验研究[J]. 振动与冲击,2013,32(8): 183-188. doi: 10.3969/j.issn.1000-3835.2013.08.032

    LUO Zheng, LI Jianzhong. Tests for a seismic performance of rectangular hollow thin-walled bridge columns under low-cycle reversed loading[J]. Journal of Vibration and Shock, 2013, 32(8): 183-188. doi: 10.3969/j.issn.1000-3835.2013.08.032
    [12] 韩强,周雨龙,杜修力. 钢筋混凝土矩形空心桥墩抗震性能[J]. 工程力学,2015,32(3): 28-40.

    HAN Qiang, ZHOU Yulong, DU Xiuli. Seismic performance of reinforced concrete rectangular hollow bridge columns[J]. Engineering Mechanics, 2015, 32(3): 28-40.
    [13] 宗周红,陈树辉,夏樟华. 钢筋混凝土箱型高墩双向拟静力试验研究[J]. 防灾减灾工程学报,2010,30(4): 369-374.

    ZONG Zhouhong, CHEN Shuhui, XIA Zhanghua. Bi-axial quasi-static testing research of high hollow reinforced concrete piers[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(4): 369-374.
    [14] HAN Q, DU X L, ZHOU Y H, et al. Experimental study of hollow rectangular bridge column performance under vertical and cyclically bilateral loads[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(3): 433-445. doi: 10.1007/s11803-013-0184-y
    [15] PARK R, PAULAY T. Reinforced Concrete Structures [M]. New York: John Wiley & Sons, 1975.
    [16] PRIESTLEY M J N, PARK R. Strength and ductility of reinforced concrete bridge columns under seismic loading[J]. ACI Structural Journal, 1987, 84(1): 61-76.
    [17] MANDER J B. Seismic design of bridge columns[D]. Christchurch: University of Canterbury, 1983.
    [18] PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: John-Wiley & Sons, 1992.
    [19] CALTRANS. Caltrans seismic design criteria: version 1.4[S]. Sacramento: California Department of Transportation, 2006.
    [20] WATSON S, PARK R. Simulated seismic load tests on reinforced concrete columns[J]. Journal of Structural Engineering, 1994, 120(6): 1825-1849. doi: 10.1061/(ASCE)0733-9445(1994)120:6(1825)
    [21] BERRY M P, LEHMAN D E, LOWES L N. Lumped-plasticity models for performance simulation of bridge columns[J]. ACI Structural Journal, 2008, 10(3): 270-279.
    [22] 孙治国,王东升,郭迅,等. 钢筋混凝土墩柱等效塑性铰长度研究[J]. 中国公路学报,2011,24(5): 56-64.

    SUN Zhiguo, WANG Dongsheng, GUO Xun, et al. Research on equivalent plastic hinge length of reinforced concrete bridge column[J]. China Journal of Highway and Transport, 2011, 24(5): 56-64.
    [23] Japan Road Association. Design specifications for highway bridges, part V: seismic design[S]. Tokyo: Japan Road Association, 2002
    [24] European Committee for Standardization. Eurocode 8: design provisions for earthquake resistance of structures, part 2: bridges: EN 1998-2[S]. Brussels: European Committee for Standardization (CEN), 2005.
    [25] MO Y L, WONG D C, MAEKAWA K. Seismic performance of hollow bridge columns[J]. ACI Structural Journal, 2003, 100(3): 337-348.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  307
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-11
  • 录用日期:  2021-11-02
  • 修回日期:  2020-06-11
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2020-06-18

目录

    /

    返回文章
    返回