• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于新型拉伸装置的根-土复合体抗拉强度

牛家永 周永毅 张建经 段达 陈克朋

韩旭, 向活跃, 李永乐. 顺向斜风作用下桥面运动车辆气动特性试验研究[J]. 西南交通大学学报, 2022, 57(1): 99-105. doi: 10.3969/j.issn.0258-2724.20200649
引用本文: 牛家永, 周永毅, 张建经, 段达, 陈克朋. 基于新型拉伸装置的根-土复合体抗拉强度[J]. 西南交通大学学报, 2022, 57(1): 191-199. doi: 10.3969/j.issn.0258-2724.20200077
HAN Xu, XIANG Huoyue, LI Yongle. Wind Tunnel Tests on Aerodynamic Characteristics of Moving Vehicles on Bridge Decks under Skew Tail-Wind[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 99-105. doi: 10.3969/j.issn.0258-2724.20200649
Citation: NIU Jiayong, ZHOU Yongyi, ZHANG Jianjing, DUAN Da, CHEN Kepeng. Tensile Strength of Root and Soil Composite Based on New Tensile Apparatus[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 191-199. doi: 10.3969/j.issn.0258-2724.20200077

基于新型拉伸装置的根-土复合体抗拉强度

doi: 10.3969/j.issn.0258-2724.20200077
基金项目: 国家重点研发计划(2017YFC0504901)
详细信息
    作者简介:

    牛家永(1992—),男,博士研究生,研究方向为生态岩土工程和岩土工程抗震,E-mail:niujiayong1229@my.swjtu.edu.cn

    通讯作者:

    张建经(1960—),男,教授,博士生导师,研究方向为生态岩土工程和岩土工程抗震,E-mail:jianzhang1102@swjtu.edu.cn

  • 中图分类号: TU41

Tensile Strength of Root and Soil Composite Based on New Tensile Apparatus

  • 摘要:

    为了研究植物根系在阻止边坡土体开裂中的作用机理,通过自主研制的一套单轴拉伸试验装置(由加载模块、数字控制模块、数据采集模块、制样模具4部分组成,可准确地获取测试材料的全过程位移-拉应力关系曲线和抗拉强度)定量地研究根系对土体抗拉强度的增强作用. 使用所研制的拉伸装置开展了不同含根量下灌木植物胡枝子根-土复合体的直接拉伸试验,分析根-土复合体的拉伸破坏机理,试验结果表明:素土的位移-拉应力曲线表现为单峰型,而根-土复合体的曲线表现为双峰型;随着含根量的增加,根-土复合体的抗拉强度呈非线性增大特征,相较于素土增加28.01%~142.15%;根-土复合体的抗拉强度可用本文提出的计算模型进行估算,当含根量为1~3根时平均误差为12.12%. 胡枝子根-土复合体的拉伸破坏过程可以分为4个阶段:应力增加阶段、土体破坏阶段、应力再增加阶段和根系滑移阶段,且根系主要在第一阶段和第三阶段起到贡献作用.

     

  • 车辆高速运行时,强风作用对车辆安全性和舒适性的影响不容忽视. 为了保证车辆在强风作用下的安全性和舒适性,需要进行风-车-桥耦合振动分析,分析的基础是进行车辆气动特性的测试,明确车辆的抗风性能[1].

    桥梁实际运营中,受到的来流并非完全垂直于桥轴线. 如,平潭海峡大桥的主要风向角(风与桥轴垂线的夹角)为10°~30°,大渡河大桥实测和数值模拟得到的风向角在45° 附近[2-3]. 在斜风作用时,桥轴线方向将有风速的分量,当车辆运动方向与此分量方向相同时,称为顺向斜风,反之称为逆向斜风. 通常,逆向斜风与车速合成后,会形成一个更小的风偏角(合成风速与桥轴线的夹角),可能对车辆的行车安全更不利[4]. 但车辆往返的概率相同,顺向斜风的作用也不容忽视.

    车辆气动特性研究的风洞试验方法主要有两种类型:静止车辆模型[5-7]和移动车辆模型[8-10]. 采用风洞试验,李永乐等[11-12]研究了垂直来流作用下的列车-桥气动特性;韩艳等[13-14]研究了桥面汽车的横风气动特性,但试验中均采用垂直来流,且车辆静止;Suzuki等[15]研究了顺向斜风和逆向斜风作用下桥面车辆的横风气动特性,结果表明气动特性呈对称关系,但其车辆为列车的中间车,且车辆静止;田红旗[16]研究了列车(头车、中间车和尾车)的在顺向斜风和逆向斜风作用下的气动特性,结果表明,顺向斜风使列车空气阻力骤降,逆风使列车空气阻力增加. 由于结构的绕流对车辆气动特性有一定的影响,向活跃等[17]采用移动车辆模型风洞试验的方法,研究了逆向斜风作用下运动车辆的气动特性,并与垂直来流情况下运动车辆的气动特性进行了对比,结果表明风向对气动力系数有一定的影响.

    综上,静止车辆模型风洞试验是一种较常用且较为成熟的方法,适用于定常气动力的测试,但对于桥面车辆在斜风及设置风屏障等特殊情况难以模拟真实的车辆与桥面相对运动. 而移动车辆模型风洞试验方法可较好地解决上述特殊问题,也能够更真实地得到车辆气动特性. 但现有的桥面车辆气动特性研究中,多是针对垂直来流情况[17],对顺向斜风作用下移动车辆气动特性的研究相对较少.

    为考察顺向斜风作用下移动车辆的气动特性,利用移动车辆模型风洞试验装置[17],测试了顺向斜风作用下移动车辆的气动特性,讨论了风速、风向角、风屏障等因素对桥面车辆气动特性的影响.

    试验在西南交通大学的XNJD-3工业风洞中进行,风洞的长、宽、高分别为36.0、22.5、4.5 m,最大风速可达16.5 m/s. 移动车辆模型试验装置由直线模组、伺服电机、桥梁和车辆模型等组成. 直线模组最大长度为10 m,有效行程为9.71 m,最大运行速度为10 m/s,最大加速度为50 m/s2. 直线模组的宽、高均为80 mm,材料为高强铝合金,刚度较大,车辆模型较轻,运动时产生的挠度较小. 该装置的正视图、侧视图及安装中的照片如图1所示[17]. 图中:U为来流风速.

    图  1  试验模型
    Figure  1.  Test model diagram

    该装置中伺服电机直接安装于直线模组上,通过模组内的同步带驱动滑台移动. 天平安装于车辆模型内,一端与车辆模型连接,另一端采用U型连接件安装于滑台之上. 直线模组固定于支撑板上,该支撑板可调整高度. 直线模组的尺寸相对较大,只能内置于桥梁部. 为保证车辆与桥面的相对运动,桥面开槽设置于桥面中心,并将橡皮条安装于开口处,以减小桥面的开槽宽度.

    由于试验车速较低,试验的雷诺数较低,为了减小雷诺数效应的影响,将客车简化为长方体车辆模型(图1),缩尺比为1/20,忽略了轮胎等的影响,同时车底简化为一平面,在模组调平后实测的车底与桥面间隙约为3.2 cm. 桥梁模型由简支梁桥梁断面简化而来,并忽略了桥面附属设施的影响(图1(b)),缩尺比同样为1/20. 桥面中心有一开槽,因此将桥梁模型分为两部分. 为了保证桥梁模型为刚性节段模型,通过焊接不锈钢方管,制成桥梁模型的骨架,然后在骨架上粘贴ABS板. 在安装过程中,首先将直线模组安装于支架之上,并调平;然后再分别安装桥梁的背风侧部分和迎风侧部分(图1(c)),桥梁模型与支架之间采用G型夹固定,以便在调整风偏角时安装和拆卸.

    车辆模型气动特性测试采用美国ATI公司生产的六分量天平,型号为Gamma IP68. 受天平尺寸和缩尺模型内部空间大小的影响,量程较大的垂直天平底座方向只能设置在顺风向,天平测力点并未在车辆模型的形心处,横向和竖向距形心处的偏心分别为3.75 cm和0.70 cm (图1(b)). 测试时,天平数据传输导线将与车辆模型一起在桥面运动,为保证车辆模型运行的安全,风屏障仅设置在迎风侧. 由于本文采用的桥梁模型为简支梁桥断面,桥面常设置声屏障(相当于透风率为0的风屏障),加上多孔风屏障难以保证几何相似. 因此,采用透风率为0的风屏障来研究其对车辆气动特性的影响,实际中的高度h分别为2.5 m和3.0 m. 安装时采用L型角码固定风屏障(图1(c)),使用胶带粘结即可.

    由于采用的车辆模型长度较短,气动力的三维效应明显. 定义车辆的五分力系数如式(1)所示,车辆的气动力示意如图2所示.

    CD(α,β)=FzρU2zHL/2,
    CL(α,β)=FyρU2zHL/2,
    CMx(α,β)=MxρU2zB2L/2,
    CMy(α,β)=MyρU2zB2L/2,
    CMz(α,β)=MzρU2zB2L/2,

    式中:CDCL$C_{M_x} $$C_{M_y} $$C_{M_{\textit{z}}}$分别为侧向阻力系数、升力系数、倾覆力矩系数、摇头力矩系数和点头力矩系数;FzFyMxMyMz分别为侧向阻力、升力、倾覆力矩、摇摆力矩和点头力矩;ρ为空气密度;HBL分别为车辆的高度、宽度和长度;Uz = Ucos αU在垂直于桥梁方向上的来流风速分量;α为风向角;β为风速U与车速V合成的风偏角,可表示为

    β=tan1(UcosαVUsinα).
    (2)

    需要说明的是,式(2)为顺向风作用下风偏角,与逆向斜风作用时的风偏角相比有一定的差异.

    图  2  气动力的定义
    Figure  2.  Definition of aerodynamic force

    U = 8 m/s,α = 30° 时车辆运动方向力Fx图3所示,对图3(a)红色虚线框中气动力时程求功率谱,如图3(b)所示. 由图3(a)可知,车辆的运动过程具有较为明显的加速、平稳和减速特征,因此可根据运动方向的阻力来提取平稳段的数据,并进行平均处理,得到平稳段车辆的气动力. 车辆运动过程中,轨道不平顺等会引起车辆模型的振动,频谱分析得到振动频率约为17.3 Hz,噪声会影响运动过程中特征的识别. 为消除气动力中噪声成分的影响,在提取数据时对原始信号采用0~10 Hz的带通滤波器进行处理,滤波前后车辆的纵向阻力时程对比结果可参考文献[17-18],由此可以看出,滤波后气动力时程也具有较好的平稳性,且能更好地区分车辆的运动过程,有利于截取平稳段数据进行分析处理. 此外,对原始信号和滤波后的数据作平均处理,可以得到不同风向角下的阻力系数,如图4所示,可以看出:滤波后平均这种数据处理方式对气动力系数影响相对较小,因此后续结果分析中的气动力系数均是基于对气动力时程滤波后再平均处理得到的.

    图  3  车辆气动力
    Figure  3.  Aerodynamic forces of vehicle
    图  4  滤波对阻力系数的影响
    Figure  4.  Effects of the filter on drag coefficient

    为了研究风速对运动车辆气动特性的影响,分别针对8 m/s和10 m/s两种风速测试了不同车速条件下风向角为30°、无风屏障时车辆的气动力,得到移动车辆在不同风速下的五分力系数,如图5所示. 由图5可知:由于车辆为钝体模型,受雷诺数的影响较小,在不同风速、不同车速但风偏角相同时,车辆的侧向阻力系数、升力系数、摇头力矩系数和点头力矩系数吻合较好;虽然倾覆力矩系数有一定的差别,但其数值较小;这表明本文测试方法是可行的.

    图  5  不同风速时的车辆五分力系数
    Figure  5.  Five-component coefficients of vehicle in various wind speeds

    图5还可以看出:侧向阻力系数、升力系数和点头力矩系数随着合成风偏角的增大而减小,但是倾覆力矩系数和摇头力矩系数随合成风偏角的增大而增大. 由于顺向斜风在车辆运动方向的分量存在,当有较高车速时仍将获得较小的风偏角,在风速和车速相同时,相比逆向斜风作用时的风偏角已明显增大,说明顺向斜风对行车安全是相对有利的. 此外,车辆气动特性并非以β = 90° 为对称轴,这与静止车辆模型试验[15]有一定的差异. 式(1)中的气动力系数是按垂直于车辆模型方向的风速来定义的,若按合成后的气动力系数来定义,则直接在式(1)的基础上乘以sin2 β即可.

    为研究风向对运动车辆气动特性的影响,针对垂直来流(α = 0)和斜风来流(α = 30°)两种风向角工况,分别测试了不同车速条件下车辆的气动力,得到移动车辆在不同风向角时的五分力系数,结果如表1所示,此时风速为8 m/s,风向角为0时车辆的运动方向与斜风情况相同.

    表1可知,风偏角相同时,两种风向角条件下车辆的五分力系数有一定的差异. 其中,风偏角为60° 时,在斜风作用下两种风向角对应的车辆升力系数差异较为显著,随着风偏角的增加,升力系数间的差异变小,这可能是因为斜风作用下风偏角为60°时车速较高(车速为8 m/s)导致的.

    表  1  不同风向时的车辆五分力系数
    Table  1.  Five-component coefficients of vehicle under different wind directions
    β/(°)α/(°)CDCL$C_{M_x} $$C_{M_y} $$C_{M_{\textit{z}}}$
    60 0 1.46 −0.43 0.07 −0.38 −0.03
    30 1.63 −0.04 −0.02 −0.49 0.13
    75 0 1.25 −0.47 0.09 −0.21 −0.08
    74 30 1.14 −0.33 0.05 −0.25 −0.03
    85 0 1.26 −0.45 0.10 −0.05 −0.03
    87 30 1.07 −0.40 0.08 −0.05 −0.01
    下载: 导出CSV 
    | 显示表格

    此外,风向角α = 0,β > 60° 时,车辆的阻力系数、升力系数、倾覆力矩系数和点头力矩系数均变化较小. 摇头力矩系数随风偏角有一定变化,这可能是因为摇头方向的力矩作用点并非位于车辆的形心位置导致的. 结合图5,考虑顺向斜风的作用后(α = 30°),β > 60° 时,倾覆力矩系数和点头力矩系数的数值已较小,但车辆的阻力系数、升力系数和摇头力矩系数随风偏角仍有一定变化,这与垂直来流(α = 0)情况有较明显的区别.

    为了减小车辆在大风区运行时受到的风荷载,常在线路两侧设置风屏障[19-20]. 为了研究风屏障高度对运动车辆气动特性的影响,分别针对无风屏障和高度风屏障h = 2.5,3.0 m,测试了不同车速条件下车辆的气动力,移动车辆的五分力系数如图6所示. 由于设置风屏障后车辆的气动力较小,所以设置U = 10 m/s,α = 30°.

    图  6  不同风屏障高度时车辆的五分力系数
    Figure  6.  Five-component coefficients of vehicle under different wind barrier heights

    图6可见,设置风屏障后,车辆阻力系数、升力系数、倾覆力矩系数和摇头力矩系数均显著的降低,风屏障明显改变了车辆气动力系数随风偏角的变化规律. 由于风屏障透风率为0,受风屏障回流的影响,车辆的阻力系数变为负值,且车辆阻力系数的绝对值随风屏障高度增加而增加.

    设置风屏障后升力系数和3个方向的力矩系数数值均较小,为进一步评价风屏障的设置对车辆阻力系数的影响,采用设置风屏障前后车辆阻力系数的比值来定义其变化率,如式(3)所示.

    γD=CDWCD,
    (3)

    式中:γD为设置风屏障后车辆阻力系数的变化率;CDW为设置风屏障后车辆的阻力系数.

    γD = 0时车辆阻力系数为0,γD < 0表示气流绕过风屏障后对车辆施加负阻力.

    图7给出了车辆阻力系数变化率随风偏角的变化规律. 由图7可见,车辆阻力系数变化率的绝对值随风屏障高度的增加而增加,随风偏角的增大而先增后减. 这表明设置风屏障后运动车辆阻力系数变化率在不同风偏角情况下是有所差异的. 由于车辆模型为钝体,雷诺数效应的影响有限,说明在顺向斜风作用下,风屏障后运动车辆阻力系数变化率在不同的车速和风速条件下是有差异的. 仅以静止车辆模型在垂直来流情况下来评价风屏障设置对车辆阻力系数变化率的影响是不全面的.

    图  7  阻力系数变化率
    Figure  7.  Change rates of drag coefficients

    采用移动车辆模型风洞试验装置,针对缩尺比为1/20的车辆和桥梁模型,测试了风向角为30° 时车辆顺向移动时的气动特性,讨论了风速、风向和风屏障等因素对桥面运动车辆气动特性的影响. 得出以下结论:

    1) 风偏角相同时,车辆的侧向阻力系数、升力系数、摇头力矩系数和点头力矩系数在不同风速下吻合较好,表明本文的测试方法是可行的.

    2) 侧向阻力系数、升力系数和点头力矩系数随着合成风偏角的增大而减小,倾覆力矩系数和摇头力矩系数随合成风偏角的增大而增大.

    3) 车辆气动特性并非以风偏角90° 为对称轴. 风向不同时,相同风偏角情况下车辆的升力系数和阻力系数有一定差异,其中对升力系数的影响最大,考虑风向和车辆的运动方向是有必要的.

    4) 风屏障能够有效的改善车辆的气动特性,且明显改变了气动力系数随风偏角的变化规律. 风屏障存在时阻力系数变为负值,且绝对值随风屏障高度增加而增加.

    5) 设置风屏障后,车辆阻力系数的变化率受到风偏角、车速和风速等条件的影响,且考虑车辆运动是必要的.

  • 图 1  制样模具

    Figure 1.  Sample preparation mold

    图 2  单轴拉伸试验装置

    Figure 2.  Uniaxial tensile test device

    图 3  胡枝子生长情况

    Figure 3.  Growing status of Lespedeza bicolor

    图 4  根系试样

    Figure 4.  Root sample

    图 5  根-土复合体制备过程

    Figure 5.  Preparation process of root-soil complex

    图 6  根-土复合体位移-拉应力关系

    Figure 6.  Relationship between displacement and tensile stress of root-soil composite systems

    图 7  第一峰值和第二峰值随含根量变化曲线

    Figure 7.  Variation curves of the first peak and the second peak with root content

    图 8  抗拉强度增量计算值与试验值对比

    Figure 8.  Comparison between calculated value and test value of tensile strength increment

    图 9  根-土复合体位移-拉应力典型关系曲线

    Figure 9.  Typical relationship of displacement and tensile stress of root-soil composite system

    图 10  素土和根-土复合体的破坏形态

    Figure 10.  Failure modes of plain soil and root soil composite system

    图 11  国道318德格—甘孜段浅层滑坡

    Figure 11.  Shallow landslide in Dege—Ganzi section of National Highway 318

    表  1  试验用土体的物理力学参数

    Table  1.   Physical and mechanical parameters of test soil

    参数密度/(g•cm−3天然含水率/%液限/%塑限/%黏聚力/kPa内摩擦角/(°)土质类型
    数值1.6524.6835.718.26.2519.78黏土
    下载: 导出CSV
  • [1] 吴宏伟. 大气–植被–土体相互作用:理论与机理[J]. 岩土工程学报,2017,39(1): 1-47. doi: 10.11779/CJGE201701001

    WU Hongwei. Atmosphere-plant-soil interactions:theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47. doi: 10.11779/CJGE201701001
    [2] 周德培, 张俊云. 植被护坡工程技术[M]. 北京: 人民交通出版社, 2003: 62-75.
    [3] 赵玉娇,胡夏嵩,李华坦,等. 寒旱环境灌木根系增强边坡土体抗剪强度特征[J]. 农业工程学报,2016,32(11): 174-180. doi: 10.11975/j.issn.1002-6819.2016.11.025

    ZHAO Yujiao, HU Xiasong, LI Huatan, et al. Characteristics of slope soil shear strength reinforced by shrub roots in cold and arid environments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 174-180. doi: 10.11975/j.issn.1002-6819.2016.11.025
    [4] 栗岳洲,付江涛,余冬梅,等. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨[J]. 岩石力学与工程学报,2015,34(7): 1370-1383.

    LI Yuezhou, FU Jiangtao, YU Dongmei, et al. Mechanical effects of halophytes roots and optimal root content for slope protection in cold and arid environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1370-1383.
    [5] 卢海静,胡夏嵩,付江涛,等. 寒旱环境植物根系增强边坡土体抗剪强度的原位剪切试验研究[J]. 岩石力学与工程学报,2016,35(8): 1712-1721.

    LU Haijing, HU Xiasong, FU Jiangtao, et al. In-situ shearing test on the shear strengh of soil slope reinforced by plant roots in cold and arid environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1712-1721.
    [6] AJEDEGBA J O, CHOI J W, JONES K D. Analytical modeling of coastal dune erosion at South Padre Island:a consideration of the effects of vegetation roots and shear strength[J]. Ecological Engineering, 2019, 127: 187-194. doi: 10.1016/j.ecoleng.2018.11.020
    [7] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
    [8] 汤连生,桑海涛,罗珍贵,等. 土体抗拉张力学特性研究进展[J]. 地球科学进展,2015,30(3): 297-309. doi: 10.11867/j.issn.1001-8166.2015.03.0297

    TANG Liansheng, SANG Haitao, LUO Zhengui, et al. Advances in research on the mechanical behavior of the tensile strength of soils[J]. Advances in Earth Science, 2015, 30(3): 297-309. doi: 10.11867/j.issn.1001-8166.2015.03.0297
    [9] MICHALOWSKI R L. Failure potential of infinite slopes in bonded soils with tensile strength cut-off[J]. Canadian Geotechnical Journal, 2018, 55: 477-485. doi: 10.1139/cgj-2017-0041
    [10] 陈正汉,郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学,2019,40(1): 1-54.

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54.
    [11] 郭楠,陈正汉,杨校辉,等. 各向同性土与横观各向同性土的力学特性和持水特性[J]. 西南交通大学学报,2019,54(6): 1235-1243.

    GUO Nan, CHEN Zhenghan, YANG Xiaohui, et al. Mechanical properties and water holding characteristics of initially isotropic soils and transversely isotropic soils[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1235-1243.
    [12] YIN P H, VANAPALLI S K. Model for predicting tensile strength of unsaturated cohesionless soils[J]. Canadian Geotechnical Journal, 2018, 55(9): 1313-1333. doi: 10.1139/cgj-2017-0376
    [13] 李荣建,刘军定,郑文,等. 基于结构性黄土抗拉和抗剪特性的双线性强度及其应用[J]. 岩土工程学报,2013,35(增刊2): 247-252.

    LI Rongjian, LIU Junding, ZHENG Wen, et al. A bilinear strength formula for structured loess based on tensile strength and shear strength and its application[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 247-252.
    [14] 吉恩跃,陈生水,傅中志. 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学,2019,40(12): 4777-4782,4792.

    JI Enyue, CHEN Shengshui, FU Zhongzhi. Experimental investigations on tensile cracking mechanical characteristics of gravelly core material[J]. Rock and Soil Mechanics, 2019, 40(12): 4777-4782,4792.
    [15] 崔猛,韩尚宇,洪宝宁. 新型土工单轴拉伸试验装置的研制及应用[J]. 岩土力学,2017,38(6): 1832-1840.

    CUI Meng, HAN Shangyu, HONG Baoning. Development and application of a new geotechnical device for direct tension test[J]. Rock and Soil Mechanics, 2017, 38(6): 1832-1840.
    [16] 黄伟,项伟,王菁莪,等. 基于变形数字图像处理的土体拉伸试验装置的研发与应用[J]. 岩土力学,2018,39(9): 3486-3494.

    HUANG Wei, XIANG Wei, WANG Jinge, et al. Development and application of digital image processing technology based soil tensile apparatus[J]. Rock and Soil Mechanics, 2018, 39(9): 3486-3494.
    [17] 张绪涛,张强勇,高强,等. 土工直接拉伸试验装置的研制及应用[J]. 岩土工程学报,2014,36(7): 1309-1315. doi: 10.11779/CJGE201407015

    ZHANG Xutao, ZHANG Qiangyong, GAO Qiang, et al. Development and application of geotechnical direct tension test devices[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1309-1315. doi: 10.11779/CJGE201407015
    [18] 伍红燕,赵倩,宋桂龙,等. 平地与边坡条件下野生胡枝子根构型特征研究[J]. 草业科学,2019,36(7): 1725-1733.

    WU Hongyan, ZHAO Qian, SONG Guilong, et al. Study on root architecture characteristics of wild Lespedeza bicolor in flatland and sloped sites[J]. Pratacultural Science, 2019, 36(7): 1725-1733.
    [19] LIANG T. KNAPPETT J A,LEUNG A K. Modelling the seismic performance of root-reinforced slopes using the finite-element method[J]. Géotechnique, 2020, 70(5): 375-391.
    [20] LI H D, TANG C S, CHENG Q, et al. Tensile strength of clayey soil and the strain analysis based on image processing techniques[J]. Engineering Geology, 2019, 253: 137-148. doi: 10.1016/j.enggeo.2019.03.017
    [21] MICHALOWSKI R L. Stability of intact slopes with tensile strength cut-off[J]. Géotechnique, 2017, 67(8): 720-727.
    [22] TANG C S, WANG D Y, CUI Y J, et al. Tensile strength of fiber-reinforced soil[J]. Journal of Materials in Civil Engineering, 2016, 28(7): 4016031.1-4016031.13. doi: 10.1061/(ASCE)MT.1943-5533.0001546
    [23] 中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
    [24] 夏振尧,刘琦,许文年,等. 多花木蓝根系与土体界面摩阻特征[J]. 水土保持学报,2018,32(1): 128-134.

    XIA Zhenyao, LIU Qi, XU Wennian, et al. Characteristics of interface friction between Indigofera amblyantha root system and soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 128-134.
    [25] 刘琦,夏振尧,饶云康,等. 亚热带区域高陡路堑岩质边坡绿化植物的选择和配置——以宜昌市峡州大道一期快速道为例[J]. 公路交通科技,2018,35(9): 137-145.

    LIU Qi, XIA Zhenyao, RAO Yunkang, et al. Selection and configuration of plants in high and steep cutting rock slope greening in subtropical region:a case study of the first phase urban expressway of Xiazhou Avenue in Yichang[J]. Journal of Highway and Transportation Research and Development, 2018, 35(9): 137-145.
    [26] 李本锋,朱海丽,谢彬山,等. 黄河源区河岸带高寒草甸植物根-土复合体抗拉特性研究[J]. 岩石力学与工程学报,2020,39(2): 424-432.

    LI Benfeng, ZHU Haili, XIE Binshan, et al. Study on tensile properties of root-soil composite of alpine meadow plants in the riparian zone of the Yellow River source region[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 424-432.
  • 期刊类型引用(2)

    1. 周洪福,张卓婷,韦玉婷. 基于滑体自重效应的滑带土强度参数取值方法. 岩石力学与工程学报. 2022(05): 1045-1053 . 百度学术
    2. 柳旻,夏玉云,杨晓鹏,王冉,郭天森,程泳祥. 老挝南俄四水电站边坡坝基F22断层工程特性研究及处理措施. 土工基础. 2022(05): 718-723 . 百度学术

    其他类型引用(3)

  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  271
  • PDF下载量:  21
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-03-15
  • 修回日期:  2020-09-03
  • 网络出版日期:  2020-09-15
  • 刊出日期:  2020-09-15

目录

/

返回文章
返回