• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于新型拉伸装置的根-土复合体抗拉强度

牛家永 周永毅 张建经 段达 陈克朋

牛家永, 周永毅, 张建经, 段达, 陈克朋. 基于新型拉伸装置的根-土复合体抗拉强度[J]. 西南交通大学学报, 2022, 57(1): 191-199. doi: 10.3969/j.issn.0258-2724.20200077
引用本文: 牛家永, 周永毅, 张建经, 段达, 陈克朋. 基于新型拉伸装置的根-土复合体抗拉强度[J]. 西南交通大学学报, 2022, 57(1): 191-199. doi: 10.3969/j.issn.0258-2724.20200077
NIU Jiayong, ZHOU Yongyi, ZHANG Jianjing, DUAN Da, CHEN Kepeng. Tensile Strength of Root and Soil Composite Based on New Tensile Apparatus[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 191-199. doi: 10.3969/j.issn.0258-2724.20200077
Citation: NIU Jiayong, ZHOU Yongyi, ZHANG Jianjing, DUAN Da, CHEN Kepeng. Tensile Strength of Root and Soil Composite Based on New Tensile Apparatus[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 191-199. doi: 10.3969/j.issn.0258-2724.20200077

基于新型拉伸装置的根-土复合体抗拉强度

doi: 10.3969/j.issn.0258-2724.20200077
基金项目: 国家重点研发计划(2017YFC0504901)
详细信息
    作者简介:

    牛家永(1992—),男,博士研究生,研究方向为生态岩土工程和岩土工程抗震,E-mail:niujiayong1229@my.swjtu.edu.cn

    通讯作者:

    张建经(1960—),男,教授,博士生导师,研究方向为生态岩土工程和岩土工程抗震,E-mail:jianzhang1102@swjtu.edu.cn

  • 中图分类号: TU41

Tensile Strength of Root and Soil Composite Based on New Tensile Apparatus

  • 摘要:

    为了研究植物根系在阻止边坡土体开裂中的作用机理,通过自主研制的一套单轴拉伸试验装置(由加载模块、数字控制模块、数据采集模块、制样模具4部分组成,可准确地获取测试材料的全过程位移-拉应力关系曲线和抗拉强度)定量地研究根系对土体抗拉强度的增强作用. 使用所研制的拉伸装置开展了不同含根量下灌木植物胡枝子根-土复合体的直接拉伸试验,分析根-土复合体的拉伸破坏机理,试验结果表明:素土的位移-拉应力曲线表现为单峰型,而根-土复合体的曲线表现为双峰型;随着含根量的增加,根-土复合体的抗拉强度呈非线性增大特征,相较于素土增加28.01%~142.15%;根-土复合体的抗拉强度可用本文提出的计算模型进行估算,当含根量为1~3根时平均误差为12.12%. 胡枝子根-土复合体的拉伸破坏过程可以分为4个阶段:应力增加阶段、土体破坏阶段、应力再增加阶段和根系滑移阶段,且根系主要在第一阶段和第三阶段起到贡献作用.

     

  • 图 1  制样模具

    Figure 1.  Sample preparation mold

    图 2  单轴拉伸试验装置

    Figure 2.  Uniaxial tensile test device

    图 3  胡枝子生长情况

    Figure 3.  Growing status of Lespedeza bicolor

    图 4  根系试样

    Figure 4.  Root sample

    图 5  根-土复合体制备过程

    Figure 5.  Preparation process of root-soil complex

    图 6  根-土复合体位移-拉应力关系

    Figure 6.  Relationship between displacement and tensile stress of root-soil composite systems

    图 7  第一峰值和第二峰值随含根量变化曲线

    Figure 7.  Variation curves of the first peak and the second peak with root content

    图 8  抗拉强度增量计算值与试验值对比

    Figure 8.  Comparison between calculated value and test value of tensile strength increment

    图 9  根-土复合体位移-拉应力典型关系曲线

    Figure 9.  Typical relationship of displacement and tensile stress of root-soil composite system

    图 10  素土和根-土复合体的破坏形态

    Figure 10.  Failure modes of plain soil and root soil composite system

    图 11  国道318德格—甘孜段浅层滑坡

    Figure 11.  Shallow landslide in Dege—Ganzi section of National Highway 318

    表  1  试验用土体的物理力学参数

    Table  1.   Physical and mechanical parameters of test soil

    参数密度/(g•cm−3天然含水率/%液限/%塑限/%黏聚力/kPa内摩擦角/(°)土质类型
    数值1.6524.6835.718.26.2519.78黏土
    下载: 导出CSV
  • [1] 吴宏伟. 大气–植被–土体相互作用:理论与机理[J]. 岩土工程学报,2017,39(1): 1-47. doi: 10.11779/CJGE201701001

    WU Hongwei. Atmosphere-plant-soil interactions:theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47. doi: 10.11779/CJGE201701001
    [2] 周德培, 张俊云. 植被护坡工程技术[M]. 北京: 人民交通出版社, 2003: 62-75.
    [3] 赵玉娇,胡夏嵩,李华坦,等. 寒旱环境灌木根系增强边坡土体抗剪强度特征[J]. 农业工程学报,2016,32(11): 174-180. doi: 10.11975/j.issn.1002-6819.2016.11.025

    ZHAO Yujiao, HU Xiasong, LI Huatan, et al. Characteristics of slope soil shear strength reinforced by shrub roots in cold and arid environments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 174-180. doi: 10.11975/j.issn.1002-6819.2016.11.025
    [4] 栗岳洲,付江涛,余冬梅,等. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨[J]. 岩石力学与工程学报,2015,34(7): 1370-1383.

    LI Yuezhou, FU Jiangtao, YU Dongmei, et al. Mechanical effects of halophytes roots and optimal root content for slope protection in cold and arid environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1370-1383.
    [5] 卢海静,胡夏嵩,付江涛,等. 寒旱环境植物根系增强边坡土体抗剪强度的原位剪切试验研究[J]. 岩石力学与工程学报,2016,35(8): 1712-1721.

    LU Haijing, HU Xiasong, FU Jiangtao, et al. In-situ shearing test on the shear strengh of soil slope reinforced by plant roots in cold and arid environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1712-1721.
    [6] AJEDEGBA J O, CHOI J W, JONES K D. Analytical modeling of coastal dune erosion at South Padre Island:a consideration of the effects of vegetation roots and shear strength[J]. Ecological Engineering, 2019, 127: 187-194. doi: 10.1016/j.ecoleng.2018.11.020
    [7] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
    [8] 汤连生,桑海涛,罗珍贵,等. 土体抗拉张力学特性研究进展[J]. 地球科学进展,2015,30(3): 297-309. doi: 10.11867/j.issn.1001-8166.2015.03.0297

    TANG Liansheng, SANG Haitao, LUO Zhengui, et al. Advances in research on the mechanical behavior of the tensile strength of soils[J]. Advances in Earth Science, 2015, 30(3): 297-309. doi: 10.11867/j.issn.1001-8166.2015.03.0297
    [9] MICHALOWSKI R L. Failure potential of infinite slopes in bonded soils with tensile strength cut-off[J]. Canadian Geotechnical Journal, 2018, 55: 477-485. doi: 10.1139/cgj-2017-0041
    [10] 陈正汉,郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学,2019,40(1): 1-54.

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54.
    [11] 郭楠,陈正汉,杨校辉,等. 各向同性土与横观各向同性土的力学特性和持水特性[J]. 西南交通大学学报,2019,54(6): 1235-1243.

    GUO Nan, CHEN Zhenghan, YANG Xiaohui, et al. Mechanical properties and water holding characteristics of initially isotropic soils and transversely isotropic soils[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1235-1243.
    [12] YIN P H, VANAPALLI S K. Model for predicting tensile strength of unsaturated cohesionless soils[J]. Canadian Geotechnical Journal, 2018, 55(9): 1313-1333. doi: 10.1139/cgj-2017-0376
    [13] 李荣建,刘军定,郑文,等. 基于结构性黄土抗拉和抗剪特性的双线性强度及其应用[J]. 岩土工程学报,2013,35(增刊2): 247-252.

    LI Rongjian, LIU Junding, ZHENG Wen, et al. A bilinear strength formula for structured loess based on tensile strength and shear strength and its application[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 247-252.
    [14] 吉恩跃,陈生水,傅中志. 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学,2019,40(12): 4777-4782,4792.

    JI Enyue, CHEN Shengshui, FU Zhongzhi. Experimental investigations on tensile cracking mechanical characteristics of gravelly core material[J]. Rock and Soil Mechanics, 2019, 40(12): 4777-4782,4792.
    [15] 崔猛,韩尚宇,洪宝宁. 新型土工单轴拉伸试验装置的研制及应用[J]. 岩土力学,2017,38(6): 1832-1840.

    CUI Meng, HAN Shangyu, HONG Baoning. Development and application of a new geotechnical device for direct tension test[J]. Rock and Soil Mechanics, 2017, 38(6): 1832-1840.
    [16] 黄伟,项伟,王菁莪,等. 基于变形数字图像处理的土体拉伸试验装置的研发与应用[J]. 岩土力学,2018,39(9): 3486-3494.

    HUANG Wei, XIANG Wei, WANG Jinge, et al. Development and application of digital image processing technology based soil tensile apparatus[J]. Rock and Soil Mechanics, 2018, 39(9): 3486-3494.
    [17] 张绪涛,张强勇,高强,等. 土工直接拉伸试验装置的研制及应用[J]. 岩土工程学报,2014,36(7): 1309-1315. doi: 10.11779/CJGE201407015

    ZHANG Xutao, ZHANG Qiangyong, GAO Qiang, et al. Development and application of geotechnical direct tension test devices[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1309-1315. doi: 10.11779/CJGE201407015
    [18] 伍红燕,赵倩,宋桂龙,等. 平地与边坡条件下野生胡枝子根构型特征研究[J]. 草业科学,2019,36(7): 1725-1733.

    WU Hongyan, ZHAO Qian, SONG Guilong, et al. Study on root architecture characteristics of wild Lespedeza bicolor in flatland and sloped sites[J]. Pratacultural Science, 2019, 36(7): 1725-1733.
    [19] LIANG T. KNAPPETT J A,LEUNG A K. Modelling the seismic performance of root-reinforced slopes using the finite-element method[J]. Géotechnique, 2020, 70(5): 375-391.
    [20] LI H D, TANG C S, CHENG Q, et al. Tensile strength of clayey soil and the strain analysis based on image processing techniques[J]. Engineering Geology, 2019, 253: 137-148. doi: 10.1016/j.enggeo.2019.03.017
    [21] MICHALOWSKI R L. Stability of intact slopes with tensile strength cut-off[J]. Géotechnique, 2017, 67(8): 720-727.
    [22] TANG C S, WANG D Y, CUI Y J, et al. Tensile strength of fiber-reinforced soil[J]. Journal of Materials in Civil Engineering, 2016, 28(7): 4016031.1-4016031.13. doi: 10.1061/(ASCE)MT.1943-5533.0001546
    [23] 中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
    [24] 夏振尧,刘琦,许文年,等. 多花木蓝根系与土体界面摩阻特征[J]. 水土保持学报,2018,32(1): 128-134.

    XIA Zhenyao, LIU Qi, XU Wennian, et al. Characteristics of interface friction between Indigofera amblyantha root system and soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 128-134.
    [25] 刘琦,夏振尧,饶云康,等. 亚热带区域高陡路堑岩质边坡绿化植物的选择和配置——以宜昌市峡州大道一期快速道为例[J]. 公路交通科技,2018,35(9): 137-145.

    LIU Qi, XIA Zhenyao, RAO Yunkang, et al. Selection and configuration of plants in high and steep cutting rock slope greening in subtropical region:a case study of the first phase urban expressway of Xiazhou Avenue in Yichang[J]. Journal of Highway and Transportation Research and Development, 2018, 35(9): 137-145.
    [26] 李本锋,朱海丽,谢彬山,等. 黄河源区河岸带高寒草甸植物根-土复合体抗拉特性研究[J]. 岩石力学与工程学报,2020,39(2): 424-432.

    LI Benfeng, ZHU Haili, XIE Binshan, et al. Study on tensile properties of root-soil composite of alpine meadow plants in the riparian zone of the Yellow River source region[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 424-432.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  188
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-15
  • 修回日期:  2020-09-03
  • 网络出版日期:  2020-09-15
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回