• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

大跨度连续梁拱桥多点多维地震响应分析

李小珍 杨得海 雷康宁 肖林 戴胜勇

李小珍, 杨得海, 雷康宁, 肖林, 戴胜勇. 大跨度连续梁拱桥多点多维地震响应分析[J]. 西南交通大学学报, 2021, 56(2): 221-228. doi: 10.3969/j.issn.0258-2724.20190400
引用本文: 李小珍, 杨得海, 雷康宁, 肖林, 戴胜勇. 大跨度连续梁拱桥多点多维地震响应分析[J]. 西南交通大学学报, 2021, 56(2): 221-228. doi: 10.3969/j.issn.0258-2724.20190400
LI Xiaozhen, YANG Dehai, LEI Kangning, XIAO Lin, DAI Shengyong. Seismic Response of Continuous Beam-Arch Bridge under Spatially Varying Ground Motions[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 221-228. doi: 10.3969/j.issn.0258-2724.20190400
Citation: LI Xiaozhen, YANG Dehai, LEI Kangning, XIAO Lin, DAI Shengyong. Seismic Response of Continuous Beam-Arch Bridge under Spatially Varying Ground Motions[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 221-228. doi: 10.3969/j.issn.0258-2724.20190400

大跨度连续梁拱桥多点多维地震响应分析

doi: 10.3969/j.issn.0258-2724.20190400
基金项目: 国家重点研发计划(2017YFC1500803);中国铁路总公司科技开发计划(P2018G007)、中国中铁股份有限公司科技开发计划(2014-重-1)
详细信息
    作者简介:

    李小珍(1970—),男,教授,研究方向为桥梁结构动力响应,E-mail:xzhli@swjtu.edu.cn

  • 中图分类号: U442.55

Seismic Response of Continuous Beam-Arch Bridge under Spatially Varying Ground Motions

  • 摘要: 为研究多点多维地震动作用下大跨度连续梁拱桥的动力响应,以我国南方某主跨为139 m的钢管混凝土连续梁拱桥为研究对象,基于有限元软件OpenSEES建立桥梁的三维有限元分析模型,人工合成空间非一致地震动,探究地震动的失相干程度、场地条件及行波波速对桥梁动力响应的影响. 研究结果表明:地震波的空间变异性效应会对连续梁拱桥的地震响应产生明显影响,仅考虑一致地震动激励会高估桥梁结构的地震响应;场地效应对桥梁地震响应的影响规律最为突出,随着支撑点处的场地越来越松软,桥梁各个部位的内力及位移响应均大幅增加;地震动的失相干效应越明显,桥梁拱肋的内力越大,位移越小;行波效应对桥梁结构的地震反应没有较为明确的影响规律,但不可忽略其作用,仅考虑行波效应会严重低估下部结构的地震响应;在大跨度桥梁结构的地震响应分析中,应着重考虑地震动的空间变异性效应,并且准确衡量各因素的作用.

     

  • 图 1  连续梁拱桥立面(单位:cm)

    Figure 1.  Elevation of the continuous beam-arch bridge (unit: cm)

    图 2  桥梁有限元模型

    Figure 2.  Finite element model

    图 3  各支撑点处非一致地震动加速度与位移时程曲线(工况4)

    Figure 3.  Generated spatially varying ground motions on different sites (case 4)

    图 4  人工生成地震波反应谱与设计反应谱对比(坚硬场地)

    Figure 4.  Comparison of the simulated acceleration and the code response spectrum (firm)

    图 5  人工生成地震波失相干损失与经验函数对比

    Figure 5.  Comparison of the coherency loss between simulated ground motions and the empirical function

    图 6  多点多维地震动下桥梁拱肋峰值响应包络图

    Figure 6.  Peak seismic responses envelope of arch rib under multi-point and multi-dimensional ground motions

    图 7  不同失相干程度时拱肋峰值响应包络图

    Figure 7.  Peak seismic responses envelope of arch rib with different coherency loss

    图 8  不同场地类型时拱肋峰值响应包络图

    Figure 8.  Peak seismic responses envelope of arch rib with different soil conditions

    图 9  不同行波波速时拱肋峰值响应包络图

    Figure 9.  Peak seismic responses envelope of bridge with different apparent wave velocities

    表  1  桥梁自振特性

    Table  1.   Vibration characteristics of bridge

    模态阶数自振周期/s频率/Hz振型描述
    12.000.50拱肋横向振动
    20.951.05桥梁纵向振动
    30.921.09拱肋横向反对称振动
    40.891.12主梁横向对称振动
    50.581.72桥梁横向振动
    下载: 导出CSV

    表  2  空间变异性地震动工况

    Table  2.   Spatial ground motion cases

    工况场地类型行波波速/(m•s−1相干损失程度
    1 FFFF 无穷
    2 FFFF 500
    3 FFFF 无穷 中等
    4 FFFF 500 中等
    5 FMMF 500 中等
    6 FSSF 500 中等
    7 FFFF 250 中等
    8 FFFF 1000 中等
    9 FFFF 500
    10 FFFF 500
    下载: 导出CSV

    表  3  多点多维地震动下桥墩峰值响应

    Table  3.   Peak seismic responses of pier under multi-point and multi-dimensional ground motions

    计算工况2# 桥墩3# 桥墩
    剪力/MN弯矩/(MN•m)位移/m剪力/MN弯矩/(MN•m)位移/m
    一致激励 380.641 285.262 0.182 402.244 429.243 0.184
    仅行波效应 130.215 124.308 0.168 124.670 377.329 0.164
    仅失相干 323.037 202.167 0.173 394.313 418.430 0.168
    非一致激励 302.871 173.473 0.171 310.209 357.471 0.175
    下载: 导出CSV

    表  4  不同失相干程度时桥墩峰值响应

    Table  4.   Peak seismic responses of pier with different coherency loss

    相干程度2# 桥墩3# 桥墩
    剪力/MN弯矩/(MN•m)位移/m剪力/MN弯矩/(MN•m)位移/m
    高相干470.964298.2380.170449.581377.7960.177
    中等相干302.871173.4730.171310.209357.4710.175
    低相干226.365153.3110.174528.717366.3310.168
    下载: 导出CSV

    表  5  不同场地类型时桥墩峰值响应

    Table  5.   Peak seismic responses of pier with different soil conditions

    场地类型2# 桥墩3# 桥墩
    剪力/MN弯矩/(MN•m)位移/m剪力/MN弯矩/(MN•m)位移/m
    坚硬302.871173.4730.171310.209357.4710.175
    中等383.243241.0760.254368.985411.7140.260
    松软415.674237.7450.349511.267437.5040.360
    下载: 导出CSV

    表  6  不同行波波速时桥墩峰值响应

    Table  6.   Peak seismic responses of pier with different apparent wave velocities

    行波波速/(m•s−12# 桥墩3# 桥墩
    剪力/MN弯矩/(MN•m)位移/m剪力/MN弯矩/(MN•m)位移/m
    1000 339.609 268.676 0.172 308.533 420.712 0.174
    500 302.871 173.473 0.171 310.209 357.471 0.175
    250 270.429 178.490 0.172 252.022 390.461 0.174
    下载: 导出CSV
  • 夏修身. 铁路连续梁拱组合桥基于摩擦摆支座的减隔震研究[J]. 西北地震学报,2012,34(4): 350-354.

    XIA Xiushen. Seismic isolation of combined system of continuous girder-arch railway bridge using friction pendulum bearing[J]. Northwestern Seismological Journal, 2012, 34(4): 350-354.
    ZANARDO G, HAO H, MODENA C. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(6): 1325-1345.
    李晰,何澜,李倩,等. 脉冲型地震动对CFST拱桥抗震性能的影响分析[J]. 西南交通大学学报,2019,54(4): 731-740. doi: 10.3969/j.issn.0258-2724.2014.05.001

    LI Xi, HE Lan, LI Qian, et al. Effect of pule-like ground motion on seismic performance of concrete-filled steel tubular arch bridge[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 731-740. doi: 10.3969/j.issn.0258-2724.2014.05.001
    王立宪,刘屺阳,狄生奎,等. 非一致激励下钢管混凝土拱桥平稳随机地震响应分析[J]. 兰州理工大学学报,2016,42(2): 124-129. doi: 10.3969/j.issn.1673-5196.2016.02.025

    WANG Lixian, LIU Qiyang, DI Shengkui, et al. Analysis of stationary random seismic response of arch bridge with concrete-filled steel tubes under non-uniform excitation[J]. Journal of Lanzhou University of Technology, 2016, 42(2): 124-129. doi: 10.3969/j.issn.1673-5196.2016.02.025
    LI B, CHOUW N. Experimental investigation of inelastic bridge response under spatially varying excitations with pounding[J]. Engineering Structures, 2014, 79: 106-116. doi: 10.1016/j.engstruct.2014.08.012
    BI K, HAO H, REN W X. Seismic response of a concrete filled steel tubular arch bridge to spatially varying ground motions including local site effect[J]. Advances in Structural Engineering, 2013, 16(10): 1799-1817. doi: 10.1260/1369-4332.16.10.1799
    马凯,钟剑,袁万城,等. 非一致地震激励下飘浮体系斜拉桥易损性分析[J]. 同济大学学报 (自然科学版),2017,45(12): 1744-1754.

    MA Kai, ZHONG Jian, YUAN Wancheng, et al. Fragility analysis of floating cable-stayed bridge under non-uniform seismic excitation[J]. Journal of Tongji University (Natural Science), 2017, 45(12): 1744-1754.
    HAN L H, YAO G H, ZHAO X L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)[J]. Journal of Constructional Steel Research, 2005, 61(9): 1241-1269. doi: 10.1016/j.jcsr.2005.01.004
    SCOTT B D, PARK R, PRIESTLEY M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain ratio Rates[D]. Lulea: Lulea University of Technology, 1989.
    MENEGOTTO M. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]//Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Lisbon: IABSE, 1973: 15-22.
    JOYNER W B, BOORE D M. Measurement,characterization,and prediction of strong ground motion[J]. Geotechnical Special Publication, 1988, 6(6): 43-102.
    贾宏宇,蓝先林,陈航,等. 基于相位差谱的非平稳地震波合成及应用[J]. 西南交通大学学报,2019,54(3): 453-460.

    JIA Hongyu, LAN Xianlin, CHEN Hang, et al. Synthesis of non-stationary seismic waves based on phase difference spectrum and its application[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 453-460.
    BI K, HAO H. Modelling and simulation of spatially varying earthquake ground motions at sites with varying conditions[J]. Probabilistic Engineering Mechanics, 2012, 29: 92-104. doi: 10.1016/j.probengmech.2011.09.002
    HAO H, OLIVEIRA C S, PENZIEN J. Multiple-station ground motion processing and simulation based on SMART-1 array data[J]. Nuclear Engineering and Design, 1989, 111(3): 293-310. doi: 10.1016/0029-5493(89)90241-0
    ZHAO L, HAO H, BI K, et al. Numerical study of the seismic responses of precast segmental column bridge under spatially varying ground motions[J]. Journal of Bridge Engineering, 2018, 23(12): 04018096.1-04018096.18.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  325
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-04
  • 修回日期:  2019-09-30
  • 网络出版日期:  2019-10-23
  • 刊出日期:  2021-04-15

目录

    /

    返回文章
    返回