• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

兰新客运专线动车组车轮多边形磨耗的机理

赵晓男 陈光雄 康熙 朱琪 张胜 吕金洲

赵晓男, 陈光雄, 康熙, 朱琪, 张胜, 吕金洲. 兰新客运专线动车组车轮多边形磨耗的机理[J]. 西南交通大学学报, 2020, 55(2): 364-371. doi: 10.3969/j.issn.0258-2724.20190027
引用本文: 赵晓男, 陈光雄, 康熙, 朱琪, 张胜, 吕金洲. 兰新客运专线动车组车轮多边形磨耗的机理[J]. 西南交通大学学报, 2020, 55(2): 364-371. doi: 10.3969/j.issn.0258-2724.20190027
ZHAO Xiaonan, CHEN Guangxiong, KANG Xi, ZHU Qi, ZHANG Sheng, LÜ Jinzhou. Mechanism of Polygonal Wear on Wheels of Electric Multiple Units on Lanzhou-Xinjiang Passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. doi: 10.3969/j.issn.0258-2724.20190027
Citation: ZHAO Xiaonan, CHEN Guangxiong, KANG Xi, ZHU Qi, ZHANG Sheng, LÜ Jinzhou. Mechanism of Polygonal Wear on Wheels of Electric Multiple Units on Lanzhou-Xinjiang Passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. doi: 10.3969/j.issn.0258-2724.20190027

兰新客运专线动车组车轮多边形磨耗的机理

doi: 10.3969/j.issn.0258-2724.20190027
基金项目: 国家自然科学基金(51775461)
详细信息
    作者简介:

    赵晓男(1990—),男,博士研究生,研究方向为高速列车车轮多边形磨耗机理. E-mail:991772946@qq.com

    通讯作者:

    陈光雄(1962—),男,教授,主要研究方向为摩擦振动与噪声. E-mail:chen_guangx@163.com

  • 中图分类号: TH117.3

Mechanism of Polygonal Wear on Wheels of Electric Multiple Units on Lanzhou-Xinjiang Passenger Dedicated Line

  • 摘要: 由于兰新客运专线的线路复杂环境,动车组车轮多边形磨耗现象严峻,加大了列车运行过程中的轮轨作用力,影响了乘客舒适性,给高速列车的安全运行造成极大威胁. 为解决上述问题,基于长期跟踪客运专线获得的车轮多边形磨耗规律以及摩擦自激理论的观点,建立了轮对-钢轨-轨道板摩擦耦合自激振动模型,通过复特征值分析方法来研究车轮多边形磨耗的形成原因及其发展规律. 研究结果表明,在直线线路上,轮轨间蠕滑力饱和引起的摩擦自激振动易导致车轮第15~16阶多边形磨耗;在制动系统和轮轨系统耦合的情况下,动力轮对和非动力轮对对应的不稳定振动频率分别容易引起第23~24阶和第22~23阶车轮多边形磨耗;轮轨之间的黏着系数变大可能是导致冬春季车轮多边形发展速度较夏季快的重要原因.

     

  • 图 1  车轮多边形磨耗变化规律

    Figure 1.  Variation of wheel polygonal wear

    图 2  轮轨系统的接触几何模型

    Figure 2.  Contact geometry models of wheelset-track system

    图 3  轮轨系统有限元模型

    Figure 3.  Finite element models of wheelset-track system

    图 4  轮轨系统等效阻尼比分布情况

    Figure 4.  Distributions of effective damping ratios for wheelset-track system

    图 5  轮轨系统不稳定振动模态

    Figure 5.  Unstable vibration modes of wheelset-track system

    图 6  制动耦合有限元模型

    Figure 6.  Finite element models with the brake coupling

    图 7  制动耦合轮轨系统等效阻尼比分布情况

    Figure 7.  Distributions of effective damping ratios of wheelset-track system with brake coupling

    图 8  制动耦合轮轨系统不稳定振动模态

    Figure 8.  Unstable vibration modes of wheelset-track system with brake coupling

    图 9  不同黏着系数下轮轨系统等效阻尼比分布情况

    Figure 9.  Frequency distributions of effective damping ratios for wheelset-track system with different adhesion coefficients

  • MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound & Vibration, 1999, 227(5): 965-978.
    BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Research Communications, 2012, 24(4): 435-442.
    NIELSEN J. Out-of-round railway wheels[M/OL]//LEWIS R, OLOFSSON U. Wheel-rail interface handbook. [S.l.]: Woodhead Publishing, 2009: 245-279[2018-10-12]. https://doi.org/10.1533/9781845696788.1.245.
    NIELSEN J C, JOHANSSON A. Out-of-round railway wheels-a literature survey[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2000, 214(2): 79-91. doi: 10.1243/0954409001531351
    NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels-a literature survey[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2000, 214(2): 79-91.
    KALOUSEK J, JOHNSON K L. An investigation of short pitch wheel and rail corrugations on the Vancouver mass transit system[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 1992, 206(2): 127-135. doi: 10.1243/PIME_PROC_1992_206_226_02
    罗仁,曾京,邬平波,等. 高速列车车轮不圆顺磨耗仿真及分析[J]. 铁道学报,2010,32(5): 30-35.

    LUO Ren, ZENG Jing, WU Pingbo, et al. Simulation and analysis of wheel out-of-roundness wear of high-speed train[J]. Journal of the China Railway Society, 2010, 32(5): 30-35.
    陈光雄,金学松,邬平波,等. 车轮多边形磨耗机理的有限元研究[J]. 铁道学报,2011,33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003

    CHEN Guangxiong, JIN Xuesong, WU Pingbo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003
    陈光雄,崔晓璐,王科. 高速列车车轮踏面非圆磨耗机理[J]. 西南交通大学学报,2016,51(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004

    CHEN Guangxiong, CUI Xiaolu, WANG Ke. Generation mechanism for plolygonalization of wheel treads of high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004
    李伟,李言义,张雄飞,等. 地铁车辆车轮多边形的机理分析[J]. 机械工程学报,2013,49(18): 17-22.

    LI Wei, LI Yanyi, ZHANG Xiongfei, et al. Mechanism of the polygonal wear of metro train wheels[J]. Journal of Mechanical Engineering, 2013, 49(18): 17-22.
    吴越,韩健,刘佳,等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报,2018,54(4): 37-46.

    WU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46.
    彭来先. 200 km/h动车组转向架振动噪声随运营里程变化规律[D]. 成都: 西南交通大学, 2018.
    王争鸣. 兰新高铁穿越大风区线路选线及防风措施设计[J]. 铁道工程学报,2015,32(1): 1-6. doi: 10.3969/j.issn.1006-2106.2015.01.001

    WANG Zhengming. Design of route selection and windproof measures for strong wind-hit section of second double line of Lanzhou-Urumqi railway[J]. Journal of Railway Engineering Society, 2015, 32(1): 1-6. doi: 10.3969/j.issn.1006-2106.2015.01.001
    尹鹏飞. 兰新铁路客运专线动车组运用维修研究[D]. 北京: 中国铁道科学研究院, 2015.
    李凌翔. 兰新高铁双块式无砟轨道有限元仿真分析研究[D]. 兰州: 兰州交通大学, 2016.
    崔晓璐,陈光雄,杨宏光. 轮对结构和扣件刚度对钢轨波磨的影响[J]. 西南交通大学学报,2017,52(1): 112-117. doi: 10.3969/j.issn.0258-2724.2017.01.016

    CUI Xiaolu, CHEN Guangxiong, YANG Hongguang. Influence of wheelset structure and fastener stiffness on rail corrugation[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 112-117. doi: 10.3969/j.issn.0258-2724.2017.01.016
    陈光雄,钱韦吉,莫继良,等. 轮轨摩擦自激振动引起小半径曲线钢轨波磨的瞬态动力学[J]. 机械工程学报,2014,50(9): 71-76.

    CHEN Guangxiong, QIAN Weiji, MO Jiliang, et al. A transient dynamics study on wear-type rail corrugation on a tight curve due to the friction-induced self-excited vibration of a wheelset-track system[J]. Journal of Mechanical Engineering, 2014, 50(9): 71-76.
    YUAN Y. An eigenvalue analysis approach to brake squeal problem[C]//Proceedings of the 29th ISATA Conference Automotive Braking Systems. Florence: [s. n.], 1996: 337-344.
    赵晓男,陈光雄,崔晓璐,等. 高速列车车轮多边形磨耗的形成机理及影响因素探究[J]. 表面技术,2018,47(8): 8-13.

    ZHAO Xiaonan, CHEN Guangxiong, CUI Xiaolu, et al. Study on the formation mechanism and influencing factors of the polygonal wear of high-speed train wheels[J]. Surface Technology, 2018, 47(8): 8-13.
    黄问盈,杨宁清,黄民. 列车制动力的二次换算计算[J]. 中国铁道科学,1999(2): 69-80.

    HUANG Wenying, YANG Ningqing, HUANG Min. Second conversion calculation for train braking force[J]. China Academy of Railway Sciences, 1999(2): 69-80.
    KUMAR S, KRISHNAMOORTHY P K, RAO D P. Wheel-rail wear and adhesion with and without sand for a North American locomotive[J]. Journal of Engineering for Industry, 1986, 108(2): 141-147. doi: 10.1115/1.3187049
  • 加载中
图(9)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  451
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-17
  • 修回日期:  2019-05-28
  • 网络出版日期:  2019-06-13
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回