Analysis for Displacement Response Characteristics of Complex Multi-layer Base-Isolated Structure under Near-Field Ground Motion
-
摘要: 为了研究近场地震动特征参数对超长复杂基础隔震结构地震位移响应的影响特征. 首先,分析了128条近场地震动特征参数之间的相关性;接着,对超长复杂基础隔震结构输入地震动,分析脉冲型地震动和非脉冲型地震动的特征参数与结构位移响应之间的相关程度及变化特征. 结果表明:隔震结构的长周期值因接近速度谱中速度敏感性区域而远离加速度谱中加速度敏感性区域,使得结构位移响应与地面峰值速度(peak ground velocity,PGV)的相关程度大于与地面峰值加速度(peak ground acceleration,PGA)的相关程度;地面峰值位移(peak ground displacement,PGD)、输入能对较低楼层的层间位移影响程度大于较高楼层层间位移的影响程度,而PGV和PGA对较低楼层的层间位移大小影响程度小于较高楼层层间位移的影响程度;其他特征参数(除输入能和PGV之外)与基础隔震结构层间位移响应的相关程度大小,同该特征参数与地震动特征参数输入能(或PGV)的相关水平程度相一致;除此之外,近场地震作用下,结构端部及边角位置支座相对中心位置支座位移明显偏大,脉冲型地震动对结构层间位移和隔震层位移分别放大56.59%、58.33%,且对较低楼层的层间位移放大作用更加明显.Abstract: In order to study the influence of near-field ground motion characteristic parameters on the seismic displacement response of a super-long complex base-isolated structure, firstly the correlation among 128 near-field ground motion characteristic parameters was analyzed. Then, the near-field ground motions were inputted into the super-long complex base-isolated structure. The correlation degree and variation characteristics between the characteristic parameters of impulsive and non-impulsive ground motions and structural displacement response were analyzed. The results show that the long period of the base-isolated structure is close to the velocity sensitivity range in the velocity spectrum, but far from the acceleration sensitivity range in the acceleration spectrum, such that the displacement response is more correlated with the peak ground velocity (PGV) rather than peak ground acceleration (PGA). The peak ground displacement (PGD) and input energy have greater influence on the inter-story displacement of lower floors than on that of higher floors, while the PGV and PGA have less influence on the inter-story displacement of lower floors than on that of higher floors. The correlation degree between other characteristic parameters and the inter-story displacement response of the base- isolated structure is consistent with the correlation degree between the corresponding characteristic parameters and input energy (or PGV). Under the near-field earthquake, the displacement of the isolation bearing at the end and corner of the structure is obviously larger than that at the center. Impulsive ground motion magnifies the inter-story displacement and isolation layer displacement by 56.59% and 58.33% respectively, and the magnification effect on the inter-story displacement of lower floors is more obvious.
-
表 1 地震动特征参数之间相关关系
Table 1. Correlation between characteristic parameters of ground motion
地震动参数 地震类型 PGA PGV PGD PGV/PGA PGD/PGA 断层距 TP 持强震时 PGV 脉冲 0.59* 非脉冲 0.58* PGD 脉冲 −0.22 0.51* 非脉冲 0.36* 0.89** PGV/PGA 脉冲 −0.59* 0.27 0.79** 非脉冲 −0.04 0.72** 0.79** PGD/PGA 脉冲 −0.59* 0.18 0.88** 0.91** 非脉冲 −0.04 0.67** 0.89** 0.87** 断层距 脉冲 −0.29 −0.35* −0.13 0.002 0.01 非脉冲 −0.23 −0.09 −0.08 0.09 0.04 TP 脉冲 −0.54* 0.06 0.78** 0.71** 0.87** 0.04 非脉冲 强震持时 脉冲 −0.64** −0.14 0.58* 0.60** 0.60** 0.19 0.66** 非脉冲 −0.19 0.36* 0.55* 0.62** 0.67** 0.07 输入能 脉冲 0.41* 0.83** 0.49* 0.26 0.28 −0.34* 0.16 0.04 非脉冲 0.45* 0.91** 0.89** 0.77** 0.74** −0.04 0.45* 注:上标“*”表示相关程度显著,“**”表示相关程度很高,后表同. 表 2 脉冲地震动参数与层间位移相关程度
Table 2. Correlation degree between impulsive ground motion parameters and inter-story displacements
参数 6层 5层 4层 3层 2层 1层 隔震层 平均值 相关性排序 输入能 0.93** 0.94** 0.95** 0.95** 0.95** 0.95** 0.96** 0.95** 1 PGV 0.86** 0.87** 0.86** 0.85** 0.85** 0.84** 0.85** 0.86** 2 PGA 0.56* 0.54* 0.51* 0.47* 0.45* 0.43* 0.43* 0.49* 3 PGD 0.32* 0.34* 0.36* 0.38* 0.40* 0.40* 0.42* 0.38* 4 PGV/PGA 0.11 0.14 0.17 0.21 0.23 0.24 0.25 0.19 6 PGD/PGA 0.07 0.09 0.12 0.15 0.18 0.19 0.21 0.14 7 断层距 −0.36* −0.36* −0.36* −0.36* −0.36* −0.36* −0.35* −0.36* 5 TP −0.01 0.003 0.03 0.06 0.08 0.08 0.10 0.05 9 持时 0.16 0.15 0.12 0.09 0.08 0.07 0.07 0.11 8 表 3 非脉冲地震动参数与层间位移相关程度
Table 3. Correlation degree between non-impulsive ground motion parameters and inter-story displacements
参数 6层 5层 4层 3层 2层 1层 隔震层 平均值 相关性排序 输入能 0.97** 0.97** 0.97** 0.98** 0.98** 0.98** 0.98** 0.97** 1 PGV 0.89** 0.89** 0.89** 0.88** 0.88** 0.87** 0.87** 0.88** 2 PGA 0.50* 0.49* 0.46* 0.43* 0.41* 0.38* 0.39* 0.44* 6 PGD 0.85** 0.85** 0.86** 0.86** 0.87** 0.87** 0.87** 0.86** 3 PGV/PGA 0.72** 0.73** 0.74** 0.76** 0.77** 0.78** 0.78** 0.75** 4 PGD/PGA 0.67** 0.68** 0.69** 0.71** 0.73** 0.75** 0.74** 0.71** 5 断层距 −0.03 −0.03 −0.03 −0.02 −0.01 0.01 0.02 −0.01 8 持时 0.34* 0.35* 0.37* 0.40* 0.42* 0.43* 0.44* 0.39* 7 表 4 位移响应结果一致性对比
Table 4. Consistency comparison of displacement responses
地震
类型参数 结构层
间位移输入能 PGV 相关
系数相差值 相关
系数相差值 脉冲 PGA 0.49* 0.41* 0.08 0.60* −0.11 PGD 0.38* 0.49* −0.12 0.51* −0.13 PGV/PGA 0.19 0.26 −0.07 0.27 −0.07 PGD/PGA 0.14 0.28 −0.13 0.18 −0.04 断层距 −0.36* −0.34* −0.02 −0.35* −0.01 TP 0.05 0.16 −0.11 0.06 −0.01 持时 0.11 0.04 0.07 −0.14 0.24 非脉冲 PGA 0.44* 0.45* −0.01 0.58* −0.14 PGD 0.86** 0.89** −0.03 0.89** −0.03 PGV/PGA 0.75** 0.77** −0.02 0.72** 0.03 PGD/PGA 0.71** 0.74** −0.03 0.67** 0.04 断层距 −0.01 −0.04 0.03 −0.09 0.08 持时 0.39* 0.45* −0.06 0.36* 0.03 -
蒲武川,黄斌,KABANDO E K. 脉冲型近场地震波反应谱的阻尼调整系数分析[J]. 西南交通大学学报,2017,52(2): 272-279. doi: 10.3969/j.issn.0258-2724.2017.02.009PU Wuchuan, HUANG Bin, KABANDO E K. Damping modification factors for response spectra of pulse-like near-fault ground motions[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 272-279. doi: 10.3969/j.issn.0258-2724.2017.02.009 赵凤新,韦韬,张郁山. 近断层速度脉冲对钢筋混凝土框架结构地震反应的影响[J]. 工程力学,2008,25(10): 180-186.ZHAO Fengxin, WEI Tao, ZHANG Yushan. Influence of near-fault velocity pulse on the seismic response of reinforced concrete frame[J]. Engineering Mechanics, 2008, 25(10): 180-186. 李小军,贺秋梅,张慧颖,等. 地震动速度脉冲对不同高宽比基础隔震结构抗震性能的影响[J]. 建筑结构学报,2018,39(1): 35-42.LI Xiaojun, HE Qiumei, ZHANG Huiying, et al. Effects of velocity pulse of ground motion on seismic capacity of base-isolated structures with different height-to-width ratios[J]. Journal of Building Structures, 2018, 39(1): 35-42. HOEL K H, SVENDSEN B T. The effect of near-fault earthquakes on a high-rise structure in the oslo area[D]. Trondheim: Norwegian University of Science and Technology, 2012. MURAT D, SRIKANTH B. Effect of isolator and ground motion characteristics on the performance of seismic-isolated bridges[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(2): 233-250. doi: 10.1002/eqe.522 王博,刘伯权,吴涛,等. 长周期地震动低频脉冲特性及反应谱分析[J]. 地震工程与工程振动,2018,38(3): 142-151.WANG Bo, LIU Boquan, WU Tao, et al. Analysis of low-frequency pulse characteristics and response spectrum for long-period ground motions[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(3): 142-151. BRAY J D, RODRIGUEZ-MAREK A. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics & Earthquake Engineering, 2004, 24(11): 815-828. TAKEWAKI I, MOUSTAFA A, FUJITA K. Improving the earthquake resilience of buildings: The worst case approach[M]. London: Springer Verlag, 2013: 1-19. 刘成清,杨巍,赵必大. 基于中日规范强震作用下的隔震结构响应对比分析[J]. 工程抗震与加固改造,2017,39(2): 67-77.LIU Chengqing, YANG Wei, ZHAO Bida. Comparative analysis of seismic response of isolated structure under strong earthquake based on Chinese and Japanese codes[J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(2): 67-77. 罗光财,丁海平,王绍博. PGV/PGA和PGD/PGA随震级和震中距变化的研究[J]. 地震工程学报,2010,32(2): 112-116. doi: 10.3969/j.issn.1000-0844.2010.02.002LUO Guangcai, DING Haiping, WANG Shaobo. Variation of the PGV/PGA and PGD/PGA along with the the change of magnitudes and epicentral distances[J]. Northwestern Seismological Journal, 2010, 32(2): 112-116. doi: 10.3969/j.issn.1000-0844.2010.02.002 韩淼,段燕玲,孙欢,等. 近断层地震动特征参数对基础隔震结构地震响应的影响分析[J]. 土木工程学报,2013,46(6): 8-13.HAN Miao, DUAN Yanling, SUN Huan, et al. Influence of characteristics parameters of near-fault ground motions on the seismic responses of base-isolated structures[J]. China Civil Engineering Journal, 2013, 46(6): 8-13. 郭宗明,张耀庭,卢杰志,等. 近场地震动作用下PC框架抗震性能影响因素[J]. 土木工程与管理学报,2017,34(5): 104-113. doi: 10.3969/j.issn.2095-0985.2017.05.017GUO Zongming, ZHANG Yaoting, LU Jiezhi, et al. Affecting factors on seismic behavior of PC frame under near-fault ground motions[J]. Journal of Civil Engineering and Management, 2017, 34(5): 104-113. doi: 10.3969/j.issn.2095-0985.2017.05.017 刘铁林,孙宇城,张柔佳. PEER地震动数据库中含速度脉冲近场地震记录[J]. 防灾减灾工程学报,2018,38(2): 367-372.LIU Tielin, SUN Yucheng, ZHANG Roujia. Near-field earthquake records with velocity pulse in PEER ground motion database[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(2): 367-372. 徐天妮,杜永峰,洪娜. 基础隔震结构弹塑性位移反应谱及其应用研究[J]. 应用基础与工程科学学报,2018,26(2): 313-323.XU Tianni, DU Yongfeng, HONG Na. Study on elastic-plastic displacement response spectra of base-isolated structures and its application[J]. Journal of Basic Science and Engineering, 2018, 26(2): 313-323. 贾俊峰,杜修力,韩强. 近断层地震动特征及其对工程结构影响的研究进展[J]. 建筑结构学报,2015,36(1): 1-12.JIA Junfeng, DU Xiuli, HAN Qiang. A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures[J]. Journal of Building Structures, 2015, 36(1): 1-12. 曹加良,施卫星,刘文光,等. 长周期结构相对位移反应谱研究[J]. 振动与冲击,2011,30(7): 63-70. doi: 10.3969/j.issn.1000-3835.2011.07.012CAO Jialiang, SHI Weixing, LIU Wenguang, et al. Relative displacement response spectrum of a long-period structure[J]. Journal of Vibration and Shock, 2011, 30(7): 63-70. doi: 10.3969/j.issn.1000-3835.2011.07.012 TADEUSIEWICZ M, HALGAS S. A new approach to multiple soft fault diagnosis of analog BJT and CMOS circuits[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(10): 2688-2695. doi: 10.1109/TIM.2015.2421712 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.