Analysis of Seismic Fragility and Recoverability of Long-Span Cable-Stayed Bridge
-
摘要: 为了研究地震作用下斜拉桥主塔的抗震能力,评估其抗震可恢复性,以一座独柱式大跨径混凝土斜拉桥为例,采用SAP2000有限元分析程序建立结构动力计算模型,通过增量动力分析法(IDA)分析结构的横向地震响应;选用X-TRACT软件对主塔划分的各关键截面进行了弯矩-曲率分析和损伤标定,对IDA分析的数据进行处理,拟合得到了主塔各关键截面的地震易损性曲线,确定主塔容易损伤部位及演变规律;基于可恢复性的理念开展结构的抗震可恢复性分析. 研究结果表明:在横向地震作用下,主塔底部截面是所选截面中最容易损坏的部位;在地震动强度0.150g和0.271g作用后,自身的抗震能力由80.6%降到46.7%,随着地震动强度的增大,抗震储备能力不断降低.Abstract: To study the seismic capacity of the main tower of cable-stayed bridge under earthquake and evaluate its seismic recoverability, the structural dynamic calculation model was established by the finite element analysis program SPA2000 based on a single-column long-span concrete cable-stayed bridge, the seismic response of the transverse cable-stayed bridge was analyzed by incremental dynamic analysis (IDA). The moment-curvature curves of the tower key sections were studied and the curvature damages were calibrated by analysis software X-TRACT, then the data from IDA analysis were processed, and the seismic vulnerability curve of each key sections of the main tower was obtained, and the vulnerable part of the main tower and its evolution law were determined. Based on the concept of recoverability, the seismic restorability analysis of the structure was carried out. The results show that under the action of transverse seismic, the bottom section of the tower is the vulnerable section. When the action of seismic intensities are 0.150g and 0.271g, its own seismic capacity decrease from 80.6% to 46.7%, with the increase of seismic intensity, the bridge’s seismic reserve capacity decrease.
-
表 1 斜拉桥边界约束条件
Table 1. Boundary constraint condition of cable-stayed bridge
表 2 斜拉桥动力特性
Table 2. Dynamic characteristics of cable-stayed bridge
阶数 自振频率/Hz 自振周期/s 振型特征 第 1 阶 0.342 2.924 主塔对称横向侧弯 第 2 阶 0.353 2.828 主塔反对称横向侧弯 第 3 阶 0.408 2.452 主梁一阶对称竖弯 第 4 阶 0.578 1.730 塔梁对称横向侧弯 第 5 阶 0.594 1.684 主塔纵弯+主梁纵飘 表 3 IDA分析选用的地震波情况
Table 3. Seismic waves for IDA analysis
编号 地震波名称 时间 地震动加速度峰值/ (× g) 谱加速度/ (× g) 地震波 1 Kobe 1995年 0.345 0.052 0 地震波 2 CHICHI 1999年 0.361 0.059 1 地震波 3 Landers 1992年 0.780 0.002 8 地震波 4 WC 2008年 0.978 0.033 4 地震波 5 Northridge 1994年 0.568 0.100 7 地震波 6 Hollister 1961年 0.195 0.034 5 地震波 7 Friuli 1976年 0.351 0.033 2 地震波 8 Imperial Valley 1979年 0.315 0.101 0 地震波 9 Loma Prieta 1989年 0.367 0.144 5 地震波 10 LS 2013年 1.026 0.009 9 地震波 11 Kocaele 1999年 0.350 0.346 5 地震波 12 Trinidad 1983年 0.194 0.007 7 表 4 地震波强度等级划分
Table 4. Intensity levels classification of seismic waves
强度等级 谱加速度/ (× g) 强度等级 谱加速度/ (× g) 等级 1 0.023 等级 6 0.136 等级 2 0.045 等级 7 0.181 等级 3 0.068 等级 8 0.203 等级 4 0.090 等级 9 0.226 等级 5 0.113 等级 10 0.249 表 5 主塔各截面损伤状态的曲率量化
Table 5. Curvature quantification of the damage states of the main tower sections
损伤状况 钢筋混凝土应变 无损伤 最外侧纵筋不出现屈服 轻微损伤 最外侧纵筋屈服应变小于初始应变、非约束混凝土的压应变小于0.004 中等损伤 纵筋应变小于0.55倍的极限拉应变、约束混凝土小于0.75倍极限压应变 严重损伤 纵筋应变小于极限拉应变、约束混凝土不大于极限压应变 表 6 主塔各关键截面的曲率损伤指标汇总
Table 6. Curvature damage indicators for key sections of the main tower
× 10−3/m 主塔关键截面 轻微损伤 中等损伤 严重损伤 完全损伤 截面 A 0.587 2.010 7.960 1.060 截面 B 0.544 1.910 7.280 9.300 截面 C 0.508 1.240 5.230 7.790 截面 D 0.524 1.250 5.880 8.290 截面 E 0.507 1.130 5.630 8.200 截面 F 0.525 2.020 5.020 7.680 表 7 截面A不同损伤区间的抗震可恢复性指标与相应发生概率
Table 7. Seismic recoverability index and corresponding occurrence probability of different damage intervals of section A
损伤状态 阶段抗震可恢复性指标 $ {I_{{\mathop{D}\nolimits}_{i}}} $ 发生概率P( Di) 完好状态 0.981 0.075 轻微损伤 0.925 0.525 中等损伤 0.651 0.372 严重损伤 0.182 0.026 完全损伤 0.000 0.002 -
庞于涛,袁万城. 考虑材料劣变过程的桥梁地震易损性分析[J]. 同济大学学报(自然科学版),2013,12(3): 348-354.PANG Yutao, YUAN Wancheng. Stochastic fragility analysis of bridges with a considertaion of material deterioration[J]. Journal of Tongji Univertisty (Natural Science), 2013, 12(3): 348-354. 丰丙龙. 基于性能的大跨径斜拉桥地震易损性及风险分析[D]. 西安: 长安大学, 2017. KIM S H. Fragility analysis of bridges under ground motion with the spatial variation[D]. California: University of California, 2002. 张菊辉. 基于数值模拟的规则梁桥墩柱的地震易损性分析[D]. 上海: 同济大学, 2006. 谷音, 钟华, 卓卫东. 基于性能的矮塔斜拉桥结构地震易损性分析[J]. 土木工程学报, 2015, 45(增刊1): 218-222.GU Yin, ZHONG Hua, ZHOU Weidong. Lower-tower cable-stayed bridge seismic vulnerability analysis[J]. China Civil Engineering Journal, 2015, 45(S1): 218-222. 焦驰宇. 基于性能的大跨斜拉桥地震易损性分析[D]. 上海: 同济大学, 2008. BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earth-quake Spectra, 2003, 19(4): 733-752. doi: 10.1193/1.1623497 吕西林,陈云,毛苑君. 结构抗震设计的新概念—— 可恢复功能结构[J]. 同济大学学报(自然科学版),2011,39(7): 941-948.LU Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design:earthquake resilient structures[J]. Journal of TongJi university (Natural Science), 2011, 39(7): 941-948. 何政,安宁,徐菁菁. 考虑损伤的结构抗震可恢复性[J]. 工程力学,2017,34(5): 179-187.HE Zheng, AN Ning, XU Jingjing. Structural seismic resilience considering damage[J]. Engineering Mechanics, 2017, 34(5): 179-187. 肖明洋. 高墩混凝土连续刚构桥地震易损性分析[D]. 成都: 西南交通大学, 2009. 张少雄. 高墩桥梁地震易损性分析研究[D]. 成都: 西南交通大学, 2014 HWANG H,刘晶波. 地震作用下钢筋混凝土桥梁结构易损性分析[J]. 土木工程学报,2004,37(6): 47-51. doi: 10.3321/j.issn:1000-131X.2004.06.009HWANG H, LIU Jingbo. Seismic fragility analysis of reinforced concrete bridges[J]. China Civil Engineering Journal, 2004, 37(6): 47-51. doi: 10.3321/j.issn:1000-131X.2004.06.009 DECò A, BOCCHINI P, FRANGOPOL D M. A probabilistic approach for the prediction of seismic resilience of bridges[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(10): 1469-1487. CHANG S E, SHINOZUKA M. Measuring improvements in the disaster resilience of communities[J]. Earthquake Spectra, 2004, 20(3): 739-755. doi: 10.1193/1.1775796 陈志伟,蒲黔辉,李晰,等. 行波效应对大跨连续刚构桥易损性影响分析[J]. 西南交通大学学报,2017,52(1): 23-29,37. doi: 10.3969/j.issn.0258-2724.2017.01.004CHEN Zhiwei, PU Qianhui, LI Xi, et al. Fragility analysis of large-span continuous rigid bridge considering wave passage[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 23-29,37. doi: 10.3969/j.issn.0258-2724.2017.01.004 FARAHNAZ S, SUJITH M, REGINALD D. Seismic resilience of concrete bridges with flared columns[J]. Procedia Engineering, 2017, 199: 3065-3070. doi: 10.1016/j.proeng.2017.09.417 陈力波,黄才贵,黄勇冰,等. 公路规则梁桥地震易损性模型及简化计算方法[J]. 西南交通大学学报,2018,53(1): 146-155. doi: 10.3969/j.issn.0258-2724.2018.01.018CHEN Libo, HUANG Caigui, HUANG Yongbing, et al. Seismic vulnerabilitu models and simplified calculation method for regular highway girder bridges[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 146-155. doi: 10.3969/j.issn.0258-2724.2018.01.018