BeiDou Navigation Satellite System/Inertial Measurement Unit Integrated Train Positioning Method Based on Improved Unscented Kalman Filter Algorithm
-
摘要: 为提高列车定位的精确性和连续性,采用北斗卫星接收机和惯性测量单元构建车载组合定位系统. 针对多传感器组合定位信息融合估计的非线性和鲁棒性需求,将抗差估计理论的等价权原理应用于标准无迹卡尔曼滤波(unscented Kalman filter,UKF)算法,构造了一种改进的UKF算法,通过对标准UKF算法的噪声协方差进行等价替换,从而起到调节滤波增益的作用,使得滤波算法对传感器观测粗差具有较强的抑制能力. 将改进的UKF算法与标准UKF算法应用于列车组合定位进行仿真比较,结果表明:传感器无观测异常时,改进UKF算法的滤波精度总体上略优于标准UKF算法;当传感器观测值含有随机粗差时,改进UKF算法的滤波精度及稳定性明显优于标准UKF算法,北向、东向位置平均估计误差分别降低了48.5%、48.8%,北向、东向速度平均估计误差分别降低了43.7%、48.9%.Abstract: In order to improve the accuracy and continuity of train positioning, BeiDou satellite receiver and inertial measurement unit were employed to construct an on-board integrated positioning system. Given the nonlinearity and robustness in the information fusion estimation of mulit-sensor positioning, an improved unscented Kalman filter (UKF) algorithm was proposed by applying the equivalence of robustness to the standard UKF. With the equivalent transformation of noise covariance in the standard UKF algorithm, the filter gain was adjusted, such that the filtering algorithm has a strong ability to suppress gross errors in sensor observation. The improved UKF algorithm and the standard UKF algorithm were applied to the integrated positioning for simulation comparison. The results show that, the filtering accuracy of the improved UKF is slightly higher than that of the standard UKF under normal conditions; the filtering accuracy and stability of the improved UKF is significantly better than the standard UKF when sensor observations contain gross errors. The average estimation errors of north and east positioning are respectively decreased by 48.5% and 48.8%. The average estimation errors of north and east speed are respectively declined by 43.7% and 48.9%.
-
表 1 误差统计结果(0~300 s)
Table 1. Error statistics(0−300 s)
参数 标准UKF 改进UKF 北向
位置/m东向
位置/m北向速度
/(m•s−1)东向速度
/(m•s−1)北向
位置/m东向
位置/m北向速度
/(m•s−1)东向速度
/(m•s−1)AVE 4.32 3.27 0.28 0.21 4.26 3.14 0.25 0.20 RMSE 3.34 2.51 0.22 0.16 3.18 2.45 0.19 0.15 表 2 误差统计结果(300~400 s)
Table 2. Error statistics(300−400 s)
参数 标准UKF 改进UKF 北向
位置/m东向
位置/m北向速度
/(m•s−1)东向速度
/(m•s−1)北向
位置/m东向
位置/m北向速度
/(m•s−1)东向速度
/(m•s−1)AVE 8.73 6.87 0.48 0.45 4.49 3.52 0.27 0.23 RMSE 6.49 5.11 0.35 0.33 3.23 2.74 0.21 0.17 -
SAAB S. A map matching approach for train positioning, part Ⅱ:application and experimentation[J]. IEEE Transactions on Vehicular Technology, 2000, 49(2): 476-484. doi: 10.1109/25.832979 蔡伯根. 低成本列控系统的列车组合定位理论与方法[D]. 北京: 北京交通大学, 2010. 马永强,郭进. 接触网定位器辅助列车定位技术[J]. 西南交通大学学报,2005,40(1): 1-4. doi: 10.3969/j.issn.0258-2724.2005.01.001MA Yongqiang, GUO Jin. Auxiliary train location technique with registration arms of electrified railways[J]. Journal of Southwest Jiaotong University, 2005, 40(1): 1-4. doi: 10.3969/j.issn.0258-2724.2005.01.001 JULIE B, FILIP A, JULIETTE M, et al. Galileo for improving railway operations:question about the positioning performances analogy with the RAMS requirements allocated to safety applications[J]. European Transport Research Review, 2010, 2(2): 93-102. doi: 10.1007/s12544-010-0032-3 刘江,蔡伯根,王剑. 基于卫星导航系统的列车定位技术现状与发展[J]. 中南大学学报(自然科学版),2014,45(11): 4033-4042.LIU Jiang, CAI Baigen, WANG Jian. Status and development of satellite navigation system based train positioning technology[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 4033-4042. JWO D J, WENG T P. An adaptive sensor fusion method with applications in integrated navigation[J]. Journal of Navigation, 2008, 61(4): 705-721. doi: 10.1017/S0373463308004827 张亮. 基于EKF的GPS/ODO列车定位方法研究[D]. 北京: 北京交通大学, 2016. JIANG Zhuqing, LIU Chonghua, ZHANG Gong, et al. GPS/INS integrated navigation based on UKF and simulated annealing optimized SVM[C]//2013 IEEE 78th Vehicular Technology Conference (VTC Fall). Las Vegas: IEEE, 2013: 30-38. JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422. doi: 10.1109/JPROC.2003.823141 YU Z J, WEI J M, LIU H T. A new adaptive maneuvering target tracking algorithm using artificial neural networks[C]//Proceedings of the International Joint Conference on Neural Networks. Hong Kong: IEEE, 2008: 901-905. CHO S Y, CHOI W S. Robust positioning technique in low-cost DR/GPS for land navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(4): 1132-1142. doi: 10.1109/TIM.2006.877718 戴连君. 基于北斗卫星系统的列车定位方法研究[D]. 北京: 北京交通大学, 2013. 杨波,秦永元,严恭敏. 列车组合导航系统研究与仿真[J]. 传感技术学报,2007,20(1): 242-246. doi: 10.3969/j.issn.1004-1699.2007.01.054YANG Bo, QIN Yongyuan, YAN Gongmin. Research and simulation on the integrated navigation system for train[J]. Chinese Journal of Sensors and Actuators, 2007, 20(1): 242-246. doi: 10.3969/j.issn.1004-1699.2007.01.054 刘江,蔡伯根,唐涛,等. 低成本列车组合定位系统容错算法设计[J]. 铁道学报,2011,33(1): 39-46. doi: 10.3969/j.issn.1001-8360.2011.01.007LIU Jiang, CAI Baigen, TANG Tao, et al. Fault-tolerant algorithm design of low-cost integrated train positioning system[J]. Journal of the China Railway Society, 2011, 33(1): 39-46. doi: 10.3969/j.issn.1001-8360.2011.01.007 易大江. 组合导航中的鲁棒滤波研究[D]. 长沙: 国防科学技术大学, 2008. 杨元喜. 抗差估计理论及其应用[M]. 北京: 八一出版社, 1993: 1-10. YANG Y, XU T. An adaptive Kalman filter based on sage windowing weights and variance components[J]. Journal of Navigation, 2003, 56(2): 231-240. doi: 10.1017/S0373463303002248 李雪鹏,张幼群,包括. UKF的改进算法及其在伪卫星定位中的应用[J]. 测绘科学技术学报,2008,25(2): 108-111.LI Xuepeng, ZHANG Youqun, BAO Kuo. Improved UKF algorithm for pseudolite positioning system[J]. Journal of Geomatics Science and Technology, 2008, 25(2): 108-111. 杨元喜. 自适应动态导航定位[M]. 北京: 测绘出版社, 2006: 68-76. 期刊类型引用(11)
1. 张昕,翟凌露,王舰深,张志,吴晨. 基于加权融合的常导高速磁浮列车UKF定位算法. 西南交通大学学报. 2024(04): 832-838 . 本站查看
2. 张雁鹏,张容容,孟楠,张冰清,肖夏. 零速修正辅助的可见光通信列车连续定位方法. 工程科学与技术. 2024(06): 248-257 . 百度学术
3. 王运明,程相,李卫东,初宪武. 基于因子图的BDS/IMU列车定位信息融合模型. 铁道科学与工程学报. 2023(03): 1077-1084 . 百度学术
4. 张雁鹏,孟楠,胥亚丽,肖夏. 基于Newton-UKF的可见光通信列车定位优化. 华中科技大学学报(自然科学版). 2023(06): 166-172 . 百度学术
5. 刘丹,姜维,蔡伯根,王剑,上官伟. 基于简化鲁棒UKF的GNSS/INS紧组合列车定位方法. 铁道学报. 2023(07): 62-71 . 百度学术
6. 郭斐,靳文军. 基于GPS钟差预测模型的列车定位技术研究. 铁路通信信号工程技术. 2022(04): 1-5 . 百度学术
7. 蔡煊,陶汉卿,侯宇婷,廖继轩,肖金梅,宋晓波. 北斗卫星导航系统在列车定位中的应用研究与发展. 铁道科学与工程学报. 2022(08): 2417-2427 . 百度学术
8. 杨佳,彭瑞召,季泽宇,王佳豪. 基于改进UKF算法的移动机器人定位方法研究. 计算机应用研究. 2022(11): 3303-3308 . 百度学术
9. 李航,杨志强,刘迪,杨兵. 改进交互多模型的GNSS/航位推算列车组合定位算法. 测绘科学. 2022(11): 10-16+84 . 百度学术
10. 陈永刚,王妍,白邓宇,熊文祥. 基于LSTM网络辅助无迹粒子滤波的列车定位方法研究. 云南大学学报(自然科学版). 2021(03): 477-485 . 百度学术
11. 程建华,王诺,尚修能. 基于改进UKF的组合导航系统航向角估计方法研究. 导航定位与授时. 2020(03): 112-119 . 百度学术
其他类型引用(22)
-