Energy-Saving System for Hybrid Hydraulic Excavators
-
摘要: 为了降低中型传统液压挖掘机的能耗,减少碳排放,在分析传统液压挖掘机系统能耗点的基础上,结合当前节能方法,提出了带能量回收的油电混合动力系统和油液混合动力系统.根据23 t液压挖掘机的参数配置,建立了传统液压挖掘机、油电混合动力和油液混合动力3种系统回转机构的数学模型,并用AMEsim软件进行仿真,在相同负载工况下,得到了3种回转机构的角位移、角速度、功率和能耗曲线.研究结果表明:油电混合动力和油液混合动力的回转系统比传统回转系统在角位移和角速度方面响应快速、准确,油电混合动力比油液混合动力响应更快;从能耗方面看,油电混合动力和油液混合动力比传统液压系统节能分别达到了42%和28%.Abstract: To reduce energy consumption and carbon emissions of medium-sized hydraulic excavators, a hydraulic-electric hybrid power system and a hydraulic-hybrid power system, both with energy recovery equipment, were devised in combination with the current energy-saving method after the energy-consumption characteristics of the traditional hydraulic excavator system were analyzed. According to the parameter configuration of the 23 t hydraulic excavator from a company, three kinds of mathematic models of slewing mechanism were set up, i.e., the traditional hydraulic excavator system, the hydraulic-electric hybrid system, and the hydraulic hybrid system. The AMEsim software was used to calculate the models in the condition of the same load, and the characteristic curves of the angular displacement, angular speed, power and energy-consumption were analyzed. The results indicate that in terms of the dynamic response of angular displacement and speed, the two hybrid slewing systems are more rapid and accurate than the traditional hydraulic system, and the hydraulic-electric hybrid system is faster than the hydraulic hybrid system. Compared with the traditional hydraulic power system, the hydraulic-electric and hydraulic hybrid power systems obtain an energy-saving index of 42% and 28%, respectively.
-
王爽, 李志远, 余新旸. 液压挖掘机负流量控制系统的节能分析与实现 [J]. 合肥工业大学学报:自然科学版, 2006, 29(2): 213-216. WANG Shuang, LI Zhiyuan, YU Xinyang. Energy saving analysis and realization of the inverted flux control system of hydraulic excavators 苏秀平, 李威, 王禹桥, 等. 液压挖掘机柴油机-泵环节功率损失分析及对策 何清华, 郝鹏, 常毅华. 基于功率协调控制的液压挖掘机节能系统研究 [J]. Journal of Hefei University of Technology: Natural Science, 2006, 29(2): 213-216. 高峰. 液压挖掘机节能控制技术的研究. 杭州:浙江大学, 2001. [J]. 机床与液压, 2009, 37(12): 104-107. SU Xiuping, LI Wei, WANG Yuqiao, et al. Study and countermeasures on engine-pump power loss of hydraulic excavators WANG D Y, GUAN C, PAN S X, et al. Performance analysis of hydraulic excavator power train hybridization LIN Tianliang, WANG Qingfeng, HU Baozan, et al, Research on the energy regeneration systems for hybrid hydraulic excavators [J]. Machine Tool Hydraulics, 2009, 37(12): 104-107. 李培. 混合动力挖掘机动臂能量回收系统研究. 成都: 西南交通大学, 2012. [J]. 机械科学与技术, 2007, 26(2): 188-191. HE Qinghua, HAO Peng, CHANG Yihua. Energy-saving system for a hydraulic excavator based on the matching of constant power and vaviable power WANG Dongyun, LIN Xiao, ZHANG Yu. Fuzzy logic control for a parallel hybrid hydraulic excavator using genetic algorithm [J]. Mechanical Science and Technology, 2007, 26(2): 188-191. 何清华, 刘昌盛, 龚俊, 等. 一种液压挖掘机并联式混合动力系统结构及控制策略 张树忠, 张弓, 陆军坊, 等. 挖掘机回转液压系统的仿真研究 尚刚, 权龙. 基于AMESim的挖掘机回转液压系统仿真分析 姜继海, 于斌.于安才, 等. 基于能量回收再利用的液压挖掘机回转系统节能研究 [J]. Automation in Construction, 2009(3): 249-257. 肖清. 液压挖掘机混合动力系统的控制策略与参数匹配研究 于安才, 姜继海. 液压混合动力挖掘机回转装置控制方式的研究 [J]. Automation in Construction, 2010(19): 1016-1026. 龚俊, 龚进, 张大庆, 等. 基于AMEsim的混合动力液压挖掘机系统建模及控制策略研究 陈晋市, 刘昕晖, 元万荣, 等. 典型液压节流阀口的动态特性 李元钊, 王述彦. 液压挖掘机工作装置转动惯量的计算 [J]. Automation in Construction, 2010(11): 1-7. [J]. 中国工程机械学报, 2011, 9(1): 48-53. HE Qinghua, LIU Changsheng, GONG Jun, et al. Research on structure and control strategy of a parallel hybrid system in hydraulic excavator [J]. Chinese Journal of Construction Machinery, 2011, 9(1): 48-53. [J]. 建筑机械化, 2008(11): 57-59. ZHANG Shuzhong, ZHANG Gong, LU Junfang, et al. Simulation of slewing hydraulic system on excavator [J]. Construction Mechanization, 2008(11): 57-59. [J]. 液压气动与密封, 2009(5): 34-38. SHANG Gang, QUAN Long. Simulation analysis of slewing hydraulic system of hydraulic excavator based on AMESim [J]. Hydraulics Pneumatics Seals, 2009(5): 34-38. [J]. 流体传动与控制, 2011(11): 7-10. JIANG Jihai, YU Bin, YU Ancai, et al. Research on hydraulic excavator's energy saving based on energy recovery and reuse [J]. Fluid Power Transmission Control, 2011(11): 7-10. [D]. 杭州:浙江大学, 2008. [J]. 西安交通大学学报, 2011, 45(7): 30-33. YU Ancai, JIANG Jihai. Control strategy for hydraulic hybrid excavator slewing [J]. Journal of Xi'an Jiaotong University, 2011, 45(7): 30-33. [J]. 现代制造工程, 2011(1): 49-53. GONG Jun, GONG Jin, ZHANG Daqing, et al. Research on modeling and control strategy of hybrid system in hydraulic excavator in AMEsim [J]. Modern Manufacturing Engineering, 2011(1): 49-53. [J]. 西南交通大学学报, 2012, 47(2): 325-332. CHEN Jinshi, LIU Xinhui, YUAN Wanrong, et al. Dynamic characteristics of typical hydraulic notches [J]. Journal of Southwest Jiaotong University, 2012, 47(2): 325-332. [J]. 工程机械, 1995(12): 5-8. LI Yuanzhao, WANG Shuyan. Calculation of the moment of inertia of the working equipment on hydraulic excavator [J]. Construction Machinery and Equipment, 1995(12): 5-8.
点击查看大图
计量
- 文章访问数: 1033
- HTML全文浏览量: 45
- PDF下载量: 471
- 被引次数: 0