Characteristics of Cathode System in Fuel Cells for Electric Vehicles
-
摘要: 为了提高车用燃料电池效率,利用物质守恒定律、理想气体方程以及二维插值法,建立了含有双螺杆压缩机的阴极系统模型,讨论了根据压缩机转速、压缩比计算其流量和功耗的方法,分析了环境因素对压缩机的影响以及阴极流体特性、过氧比特性.研究结果表明:在设定条件下,随过氧比变化,系统输出功率和效率的变化规律一致,最优过氧比为2.5,电能利用效率随过氧比增大呈单调下降趋势;工作温度升高能够提高系统输出功率,但会使系统电能利用效率有微弱降低,工作温度由60 ℃升到80 ℃时,系统输出功率增长5.03%,电能利用效率降低0.57%.Abstract: To improve the efficiency of fuel cells for vehicles, a cathode system model with a twin screw compressor was built by mass conservation, ideal gas law, and two-dimensional interpolation method. The methods to compute the air flow rate and the power of the compressor were discussed according to its rotational speed and pressure ratio. Based on the cathode system model, the influences of ambient factors on the cathode flow property and oxygen excess ratio (OER) were studied. Simulation results show that the output power and the efficiency change with the change of OER in the same way under the set conditions, and the optimal value of OER is 2.5, while the electrical efficiency decreases with OER increasing. In addition, elevated stack temperature will result in an increase in output power and a slight decrease in electrical efficiency. When the temperature elevates from 60 ℃ to 80 ℃, the output power increases by 5.03% and the electrical efficiency decreases by 0.57%.
-
Key words:
- fuel cell /
- electric vehicles /
- twin screw compressor /
- oxygen excess ratio /
- cathode system
-
徐腊梅. 质子交换膜燃料电池模拟和优化 RYAN O H, WHITNY C, FRITZ B P. 燃料电池基础 [M]. 北京: 国防工业出版社, 2012: 1-2. 陈维荣, 钱清泉, 李奇. 燃料电池混合动力列车的研究现状与发展趋势 [M]. 王晓红, 译. 北京:电子工业出版社, 2007: 6-7. 李奇, 陈维荣, 刘述奎, 等. H_鲁棒控制的质子交换膜燃料电池空气供应系统设计 张立炎, 潘牧, 全书海. 燃料电池空气供应系统建模与动态仿真的研究 [J]. 西南交通大学学报, 2009, 44(1): 1-6. CHEN Weirong, QIAN Qingquan, LI Qi. Investigation status and development trend of hybrid power train based on fuel cell PUKRUSHPAN J T, PENG H, STEFANOPOULOU A G. Simulation and analysis of transient fuel cell system performance based on a dynamic reactant flow model 马天才. 燃料电池发动机控制问题研究 [J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6. 陈海蓉, 周苏. 电动汽车燃料电池增程器应用:小功率空气压缩机建模与仿真 [J]. 中国电机工程学报, 2009, 29(5): 109-116. LI Qi, CHEN Weirong, LIU Shukui, et al. Proton exchange membrane fuel cell air supply system design based on H_ robust control MEHRDAD E, GAO Yimin, EMADI A. 现代电动汽车、混合电动汽车和燃料电池车:基本原理、理论和设计 [J]. Proceedings of the CSEE, 2009, 29(5): 109-116. 孙来玉. 燃料电池用高速无油双螺杆压缩机的设计与研究 PUKRUSHPAN J T, STEFANOPOULOU A G, PENG H. Control of fuel cell breathing JAMES L, ANDREW D. Fuel cell systems explained [J]. 系统仿真学报, 2008, 20(4): 850-854. ZHANG Liyan, PAN Mu, QUAN Shuhai. Modeling and dynamic simulation of air supply system in proton exchange membrane fuel cell [J]. Journal of System Simulation, 2008, 20(4): 850-854. JIA J, LI Q, WANG Y, et al. Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell CHENG B, MINGGAO O, YI Baolian. Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system-Ⅱ. Linear and adaptive nonlinear control ARCE A, DEL REAL A J, BORDONS C, et al.Real-time implementation of a constrained MPC for efficient airflow control in a PEM fuel cell [C]//ASME International Mechanical Engineering Congress and Exposition. New Orleans: [s.n.], 2002: 637-648. [D]. 上海:同济大学, 2007. [J]. 上海汽车, 2010(2): 6-10. CHEN Hairong, ZHOU Su. Application of the range extender of the electric vehicle fuel cell: modeling and simulation of a small power air compressor [J]. Shanghai Auto, 2010(2): 6-10. [M]. 倪光正, 译. 北京:机械工业出版社, 2010: 371. [D]. 杭州:浙江大学, 2007. [J]. IEEE Trans. Control Systems, 2004, 24(2): 30-46. [M]. Chichster: John Wiley Sons Ltd., 2003: 59. [J]. IEEE Trans. Energy Conversion, 2009, 24(1): 283-291. [J]. International Journal of Hydrogen Energy, 2006, 31: 1897-1913. [J]. IEEE Transactions on Industrial Electronic, 2010, 57(6): 1892-1905.
点击查看大图
计量
- 文章访问数: 1045
- HTML全文浏览量: 64
- PDF下载量: 469
- 被引次数: 0