Parameter Optimization of Fluid Viscous Damper Based on Stochastic Vibration
-
摘要: 为克服参数敏感性分析方法在研究液体黏滞阻尼器最优阻尼参数时计算工作量大、分析效率低的缺点,利用随机振动理论推导了桥梁上部结构振动系统的理论最优阻尼比,得到了线性液体黏滞阻尼器最优阻尼系数的解析表达式.采用能量等效原理,进一步推导了非线性液体粘滞阻尼器的最优阻尼系数的解析表达式.以某连续梁桥为例,采用动力时程法分析了参数的敏感性.分析结果表明:桥梁用线性液体粘滞阻尼器存在理论上的最优阻尼比0.5,其对应的阻尼系数可以使阻尼器的减震效率达到最大值.与线性阻尼器相比,非线性阻尼器的最优阻尼系数和最优阻尼力分别降低了55%~67%及16%~22%.Abstract: In order to avoid the large computational cost and low efficiency of parametric-sensitivity methods in the parameter optimization of fluid viscous dampers, the theoretical optimum damping ratio of the bridge superstructure vibration system was derived by stochastic vibration method, and an analytical expression for the optimum damping coefficient of linear fluid viscous damper for bridge was then obtained. Meanwhile, the optimum damping coefficient of nonlinear fluid viscous damper for bridge was also derived based on the principle of energy equivalence. In order to verify the reliability of the analytical expression, taking a continuous bridge as an example, the parametric sensitivity on the damping coefficient was analyzed by dynamic time history method. The results show that the theoretical optimum damping ratio of the bridge linear fluid viscous damper is 0.5, which enables the damper to reach its maximum frequency. Compared with the linear fluid viscous damper, the optimum damping coefficient and damping force of the nonlinear fluid viscous damper is decreased by 55% -67% and 16% -22%, respectively.
-
LEE D, TAYLOR D P. Viscous damper development and future trends 卢桂臣, 胡雷挺. 西堠门大桥液体粘滞阻尼器参数分析 [J]. Structural Design of Tall Buildings, 2001, 10(5): 311-320. 李爱群, 王浩. 大跨悬索桥地震响应控制的阻尼器最优布置方法 [J]. 世界桥梁, 2005(2): 43-45. LU Guichen, HU Leiting. Analysis of parametric sensitivity of fluid viscous dampers for Xihoumen Bridge 聂利英, 李建中, 胡世德, 等. 任意荷载作用下液体黏滞阻尼器在桥梁工程中减震作用探讨 LIN W H, CHOPRA Anil K. Earthquake response of elastic SDOF system with nonlinear fluid viscous dampers [J]. World Bridge, 2005(2): 43-45. PEKCAN G, MANDER J B, CHEN S S. Fundamental consideration for the design of nonlinear viscous dampers MIRANDA E, BERTERO V. Evaluation of strength reduction factors for earthquake resistant design [J]. 东南大学学报:自然科学版, 2009, 39(2): 315-319. LI Aiqun, WANG Hao. Optimal placement method of dampers for seismic control of long-span suspension bridges MARTINEZ-RODRIGO M, ROMERO M L. An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications [J]. Journal of Southeast University: Natural Science Edition, 2009, 39(2): 315-319. LIU Wei, TONG Mai, LEE G C. Optimization methodology for damper configuration based on building performance indices 周云. 黏滞阻尼减震结构设计 [J]. 计算力学学报, 2007, 24(2): 197-202. NIE Liying, LI Jianzhong, HU Shide, et al. Investigation of decreasing vibration effects of fluid viscous damper in bridge engineering under random loads [J]. Chinese Journal of Computational Mechanics, 2007, 24(2): 197-202. TAKEWAKI I. Optimal damper placement for planar building frames using transfer functions SINGH M P, MORESCHI L M. Optimal placement of dampers for passive response control [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(9): 1623-1642. LAVAN O, LEVY R. Optimal peripheral drift control of 3D irregular framed structures using supplemental viscous dampers 邢帆, 祝兵, 赵灿晖. 近断层地震作用下大跨CFST拱桥的动力稳定性 [J]. Earthquake Engineering and Structural Dynamics, 1999, 28(11): 1405-1425. 杨万理, 李乔. 动水压力对连续刚构桥梁地震响应的影响 [J]. Earthquake Spectra, 1994, 10(2): 357-379. [J]. Engineering Structure, 2003, 25(7): 913-925. [J]. Journal of Structure Engineering, 2005, 131(11): 1746-1756. [M]. 武汉:武汉理工大学出版社, 2006: 104-105. [J]. Structural and Multidisciplinary Optimization, 2000, 20(4): 280-287. [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(6): 955-976. [J]. Journal of Earthquake Engineering, 2006, 10(6): 903-923. [J]. 西南交通大学学报, 2012, 47(3): 367-372. XING Fan, ZHU Bing, ZHAO Canhui. Dynamic stability of long-span CFST arch bridge under action of near-fault ground motions [J]. Journal of Southwest Jiaotong University, 2012, 47(3): 367-372. [J]. 西南交通大学学报, 2012, 47(3): 373-378. YANG Wanli, LI Qiao. Effects of hydrodynamic pressure on seismic response of continuous rigid-framed bridge [J]. Journal of Southwest Jiaotong University, 2012, 47(3): 373-378.
点击查看大图
计量
- 文章访问数: 1111
- HTML全文浏览量: 64
- PDF下载量: 469
- 被引次数: 0