Analysis of Route Travel Time Variation of Road Network Suffering Traffic Incidents
-
摘要: 为了对交通管理系统中的事件管理提供可靠的决策依据,针对持续期为数天的交通事件,考虑事件发生后出行者日常路径选择的随机性,基于路径流量联合概率分布的动态调整过程,建立了描述路网系统路径行程时间变化的随机动态交通分配模型.并用算例网络验证了本文建立模型的可行性.算例研究结果表明:交通事件持续期每增加10 d,持续期内路径的平均行程时间增加0.24%;与普通路段相比,事件发生在关键路段导致平均行程时间增加3.07%; 路段通行能力每下降10%,平均行程时间增加2.53%;不同事发路段对路网系统在事件结束后恢复到均衡状态所需时间的差别显著,关键路段通行时间的恢复约为普通路段的4倍.Abstract: Analyzing route travel time variation of road network suffering traffic incidents can provide reliable decision supports for the incident management of advanced traffic management systems. Taking into consideration the randomness of travelers' daily route choice when incidents with a duration of several days occurs, a random dynamical assignment model was proposed to describe the route travel time variation of the road network system under such occasion based on the dynamical adjustment process with route flows subjecting to a joint probability distribution. Then, the model was applied to an example network to confirm its feasibility. The results show that when the traffic incident duration prolongs 10 more days, the average route travel time increases 0.24%. Compared with normal links, the critical link that suffers the traffic incident causes the average travel time to increase 3.07%: When the link capacity degrades 10%, the average travel time increases 2.53%. The necessary time for the network system recovering to equilibrium after the clearance of incident is greatly affected by the link with traffic incident. The recovery time of the critical link suffering incident is about 4 times longer than that of normal links.
-
Key words:
- traffic incidents /
- travel time /
- random dynamical assignment
-
石小法,王炜. 交通事故对城市交通网络的影响研究[J]. 公路交通科技, 2000, 17(5): 38-41. SHI Xiaofa, WANG Wei. Study on accident effects in urban transportation network[J]. Journal of Highway and Transportation Research and Development, 2000, 17(5): 38-41. 臧华,彭国雄.城市快速道路异常事件下路段行程时间的研究[J]. 交通运输系统工程与信息,2003,3(2): 57-59. ZANG Hua, PENG Guoxiong. A study of link travel time function during incident on urban expressway[J]. Journal of Transportation Systems Engineering and Information Technology, 2003, 3(2): 57-59. 王建军. 交通事件和干预作用影响下的高速公路车流波分析[J]. 重庆交通大学学报,2006,25(6): 104-107. WANG Jianjun. Expressway traffic-flow wave analysis on the influence of traffic incidents and intervention process[J]. Journal of Chongqing Jiaotong University, 2006, 25(6): 104-107. 俞斌,陆建,陶小伢. 道路交通事故的影响范围算法[J]. 城市交通,2008,6(3): 82-86. YU Bin, LU Jian, TAO Xiaoya. Method to determine the influence area of street accidents[J]. Urban Transport of China, 2008, 6(3): 82-86. 陈维荣,关佩,邹月娴. 基于SVM的交通事件检测技术[J]. 西南交通大学学报,2011,46(1): 63-67. CHEN Weirong, GUAN Pei, ZOU Yuexian. Automatic incident detection technology based on SVM[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 63-67. 张海军,张珏,杨晓光. 异常事件下高速道路交通状态的分析与仿真[J]. 交通运输工程学报,2008,8(2): 116-121. ZHANG Haijun, ZHANG Jue, YANG Xiaoguang. Analysis and simulation of traffic state on expressway during incident[J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 116-121. BAYKAL-GURSOY M, XIAO W, OZBAY K. Modeling traffic flow interrupted by incidents[J]. European Journal of Operational Research, 2009, 195(1): 127-138. CASCETTA E. A stochastic process approach to the analysis of temporal dynamics in transportation networks[J]. Transportation Research B, 1989, 23(1): 1-17. YANG F, LIU H. A general modeling framework for travelers' day-to-day route choice adjustment processes[D]//Transportation and Traffic Theory. Amsterdam: Elsevier, 2007: 813-837. HE X, GUO X, LIU H. A link-based day-to-day traffic dynamic model[J]. Transportation Research Part B, 2010, 44(4): 597-608. CANTARELLA G E, CASCETTA E. Dynamic processes and equilibrium in transportation networks: towards a unifying theory[J]. Transportation Science, 1995, 29(4): 305-329. SHEFFI Y. Urban transportation networks: equilibrium analysis with mathematical programming methods[M]. Englewood Cliffs: Prentice-Hall, Inc., 1985: 264-269. HAZELTON M L. Day-to-day variation in Markovian traffic assignment models[J]. Transportation Research B, 2002, 36(7): 637-648. WATLING D. Stability of the stochastic equilibrium assignment problem: a dynamical systems approach[J]. Transportation Research C, 1999, 33(4): 281-312. NGUYEN S, DUPUIS S. An efficient method for computing traffic equilibria in networks with asymmetric transportation costs[J]. Transportation Science, 1984, 18(2): 185-202.
点击查看大图
计量
- 文章访问数: 932
- HTML全文浏览量: 61
- PDF下载量: 359
- 被引次数: 0