翼吊发动机转子系统在大气紊流下的响应分析
doi: 10.3969/j.issn.0258-2724.2013.05.022
Response Analysis of Wing-Mounted Engine Rotor System under Atmospheric Turbulence
-
摘要: 针对翼吊发动机高空工作时受大气紊流影响这一现象,基于机翼气动弹性力学和转子动力学理论, 采用Dryden紊流模型作为大气速度模型,建立了翼吊发动机转子系统在大气紊流下的动力学模型,运用虚拟激励法对模型进行数值计算.结果表明:转子系统中各转盘站的位移响应功率谱密度变化趋势与大气紊流速度功率谱密度变化趋势基本相似,但在固有频率处会出现位移响应强度峰值;当角频率大于100 rad/s时,大气紊流引起的位移响应强度随着角频率的增大而减小,并且不可忽视转子系统本身特性对位移响应强度的影响.Abstract: In order to study the phenomenon that wing-mounted engines working at high altitudes could be affected by the atmospheric turbulence, a dynamic model of wing-mounted engine rotor system under atmospheric turbulence was established using the theories of wing aeroelastics and rotor dynamics and adopting the Dryden turbulence model as the atmospheric speed model. To solve the dynamic model, the pseudo-excitation method was used for numerical calculation. The results show that the power spectral density (PSD) of the displacement response at each turntables station in the rotor system has almost a similar variation trend to the PSD of the atmospheric turbulence speed, but the displacement response intensity peak occurs at the natural frequency. The displacement response intensity caused by atmospheric turbulence decreases with the angular frequency increasing when the angular frequency is larger than 100 rad/s, and the effect of rotor system characteristics on the displacement response intensity cannot be neglected.
-
Key words:
- atmospheric turbulence /
- rotor system /
- pseudo-excitation method /
- response
-
POIREL D, PRICE S J. Response probability structure of a structurally nonlinear fluttering airfoil in turbulent flow[J]. Probabilistic Engineering Mechanics, 2003, 18(2): 185-202. KIM T U, HWANG I H. Reliability analysis of composite wing subjected to gust loads[J]. Composite Structures, 2004, 66(1/2/3/4): 527-531. 郑国勇,鲁丽,杨翊仁. 大气紊流作用下超音速二元机翼的脉动响应[J]. 振动与冲击,2009,28(4): 110-112. ZHENG Guoyong, LU Li,YANG Yiren. Pulsation response of a two dimensional wing to atmosphere turbulence in supersonic flow[J]. Journal of Vibration and Shock, 2009, 28(4): 110-112. 张明禄,杨翊仁,吕志咏. 三角翼破裂涡流的非定常特性[J]. 西南交通大学学报,2012,47(5): 832-835. ZHANG Minglu, YANG Yiren, Lü Zhiyong. Unsteady characteristics of vortex breakdown over delta wing[J]. Journal of Southwest Jiaotong University, 2012, 47(5): 832-835. HUANG T P. Transfer matrix impedance coupling method for the eigensolutions of multi-spool rotor systems[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110(4): 468-472. 洪杰,韩继斌,朱梓根. 用整体传递系数法分析转子系统动力特性[J]. 北京航天航空大学学报,2002,28(1): 39-42. HONG Jie, HAN Jibin, ZHU Zhigen. Dynamic characteristics analysis of rotor system whole transfer coefficient method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1): 39-42. 范叶森,王三民,杨振. 多转子系统振动分析的子结构耦合矩阵法[J]. 航空动力学报,2010,25(3): 623-628. FAN Yesen, WANG Sanmin, YANG Zhen. Substructure coupled matrix method for vibration analysis of multi-rotor systems[J]. Journal of Aerospace Power, 2010, 25(3): 623-628. ANANDAVEL K, RAGHU V. Effect of three-dimensional loading on macroscopic fretting aspects of an aero-engine blade-disc dovetail interface[J]. Tribology International, 2011, 44: 1544-1555. TIAN L, WANG W J, PENG Z J. Dynamic behaviours of a full floating ring bearing supported turbocharger rotor with engine excitation[J]. Journal of Sound and Vibration, 2011, 330: 4851-4874. LUCA M, GALVANETTO U. Example of a non-smooth Hopf bifurcation in an aero-elastic system[J]. Mechanics Research Communications, 2012, 40: 26-33. 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社,2007: 218-231. 林家浩,张亚辉. 随机振动的虚拟激励法[M]. 北京:科学出版社,2004: 42-54. 朱艳,李小珍,强士中. 高速铁路简支梁桥车桥系统随机响应[J]. 西南交通大学学报,2011,46(4): 535-540. ZHU Yan, LI Xiaozhen, QIANG Sizhong. Stochastic responses of train-bridge coupling system for simply-supported high-speed railway bridge[J]. Journal of Southwest Jiaotong University, 2011, 46(4): 535-540. 戴新进. 复合材料结构随机振动的虚拟激励法及在航空航天领域的应用[D].大连:大连理工大学,2007. 航空发动机设计手册总编委会.航空发动机设计手册:转子动力学及整机振动[M]. 19册.北京:航空工业出版社,2000: 292-312.
点击查看大图
计量
- 文章访问数: 1047
- HTML全文浏览量: 81
- PDF下载量: 420
- 被引次数: 0