• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于时变边界屋面积雪分布数值模拟

王卫华 廖海黎 李明水

王卫华, 廖海黎, 李明水. 基于时变边界屋面积雪分布数值模拟[J]. 西南交通大学学报, 2013, 26(5): 851-856,967. doi: 10.3969/j.issn.0258-2724.2013.05.011
引用本文: 王卫华, 廖海黎, 李明水. 基于时变边界屋面积雪分布数值模拟[J]. 西南交通大学学报, 2013, 26(5): 851-856,967. doi: 10.3969/j.issn.0258-2724.2013.05.011
WANG Weihua, LIAO Haili, LI Mingshui. Numerical Simulation of Wind-Induced Roof Snow Distributions Based on Time Variable Boundary[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 851-856,967. doi: 10.3969/j.issn.0258-2724.2013.05.011
Citation: WANG Weihua, LIAO Haili, LI Mingshui. Numerical Simulation of Wind-Induced Roof Snow Distributions Based on Time Variable Boundary[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 851-856,967. doi: 10.3969/j.issn.0258-2724.2013.05.011

基于时变边界屋面积雪分布数值模拟

doi: 10.3969/j.issn.0258-2724.2013.05.011
基金项目: 

国家自然科学基金资助项目(51278433)

Numerical Simulation of Wind-Induced Roof Snow Distributions Based on Time Variable Boundary

  • 摘要: 为了预测风作用下屋面积雪的分布,采用Euler-Euler两相流混合模型,结合最新改进的k-ω模型等数值方法开发分析程序,对风致屋面积雪分布进行了数值模拟.模拟中为考虑积雪对屋面绕流的影响,计算区域边界根据雪深变化采用时变边界.对一典型阶梯形屋面积雪分布进行数值模拟,获得了几种不同状态下屋面积雪分布的时间历程.模拟结果表明:随着时间的发展,屋面积雪分布对屋面绕流产生较大影响,屋面积雪沉积率随之发生变化;模拟时长22 h的计算结果与实测结果基本一致,不考虑积雪对屋面绕流的影响将产生较大误差;不同风速比下模拟的屋面雪深分布形态基本一致,但入流风速比越小,雪深分布系数相对越大,达到近似分布的模拟时间就越短.

     

  • 张德海,南波,舒铮. 雪灾后某网架破坏分析及加固[J]. 沈阳建筑大学学报:自然科学版,2010,26(1): 62-67. ZHANG Dehai, NAN Bo, SHU Zheng. Destroying analysis and reinforcement research on space truss structure after snowstorms[J]. Journal of Shenyang Jianzhu University: Natural Science, 2010, 26(1): 62-67.
    TSUCHIYA M, TOMABECHI T, HONGOA T, et al. Wind effects on snowdrift on stepped flat roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 1881-1892.
    ISYUMOV N, MIKITIUK M. Wind tunnel model tests of snow drifting on a two-level flat roof[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36(2): 893-904.
    FLAGA A, KIMBAR G, MATYS P. A new approach to wind tunnel similarity criteria for snow load prediction with an exemplary application of football stadium roof[C]//Proceedings of the 5th European and African Conference on Wind Engineering. Florence, Italy: Firenze University Press, 2009: 648-657.
    周晅毅,顾明. 风致积雪漂移堆积效应的研究进展[J]. 工程力学,2008,25(7): 5-10. ZHOU Xuanyi, GU Ming. Simulation of the wind-induced snowdrift: state of the art[J]. Engineering Mechanics, 2008, 25(7): 5-10.
    UEMATSU T, KANEDA Y, TAKEUCHI K, et al. Numerical simulation of snowdrift development[J]. Annals of Glaciology, 1989, 13: 265-268.
    ALHAJRAF S. Numerical simulation of sand and snow drift at porous fences[C]//Proceedings of ICAR5/GCTE-SEN Joint Conference. Lubbock, Texas, USA: Texas Tech University, 2002: 208-213.
    BEYERS J H M, SUNDSB P A, HARMS T M. Numerical simulation of three-dimensional, transient snow drifting around a cube[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(9): 725-747.
    周暄毅,顾明,朱忠义,等. 首都国际机场3号航站楼屋面雪荷载分布研究[J]. 同济大学学报:自然科学版,2007,35(9): 1193-1196. ZHOU Xuanyi, GU Ming, ZHU Zhongyi, et al. Study on snow loads on roof of terminal 3 of Beijing Capital International Airport[J]. Journal of Tongji University: Natural Science, 2007, 35(9): 1193-1196.
    WILCOX D C. Turbulence modeling for CFD[M]. 3rd ed. San Diego, California: DCW Industries, Inc., 2006: 122-128.
    KIND R J. Mechanics of aeolian transport of snow and sand[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36(Part 2): 855-866.
    NAAIM M, NAAIM-BOUVET F, MARTINEZ H. Numerical simulation of drifting snow: erosion and deposition models[J]. Annals of Glaciology, 1998, 26: 191-196.
    MELLOR M. Blowing snow[r]. Hanover, New Hampshire: Cold Regions Research & Engineering Laboratory, 1965.
    SCHNEIDERBAUER S, TSCHACHLER T, FISCHBACHER J, et al. Computational fluid dynamic (CFD) simulation of snowdrift in alpine environments, including a local weather model, for operational avalanche warning[J]. Annals of Glaciology, 2008, 48: 150-158.
    RICHARDS P J, NORRIS S E. Appropriate boundary conditions for computational wind engineering models revisited[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 257-266.
    KOBAYASHI S, ISHIKAWA N, OHATA T. Katabatic snow storms in stable atmospheric conditions at Mizuho station, Antarctica[J]. Annals of Glaciology, 1985, 6: 229-231.
    TRAOR P, AHIPO Y M. A robust and efficient finite volume scheme for the discretization of diffusive flux on extremely skewed meshes in complex geometries[J]. Journal of Computational Physics, 2009, 228(14): 5148-5159.
    NORRIS S E, RICHARDS P J, MALLINSON G D. Improved finite volume discretisations of entropy generation and turbulence production[J]. Computers & Fluids, 2011, 49(1): 302-311.
  • 加载中
计量
  • 文章访问数:  1028
  • HTML全文浏览量:  81
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-16
  • 刊出日期:  2013-10-25

目录

    /

    返回文章
    返回