• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于正交变换的区间Ⅱ型模糊模型结构精简

姚兰 肖建 蒋玉莲

姚兰, 肖建, 蒋玉莲. 基于正交变换的区间Ⅱ型模糊模型结构精简[J]. 西南交通大学学报, 2013, 26(3): 481-486. doi: 10.3969/j.issn.0258-2724.2013.03.014
引用本文: 姚兰, 肖建, 蒋玉莲. 基于正交变换的区间Ⅱ型模糊模型结构精简[J]. 西南交通大学学报, 2013, 26(3): 481-486. doi: 10.3969/j.issn.0258-2724.2013.03.014
YAO Lan, XIAO Jian, JIANG Yulian. Interval TypeⅡ Fuzzy Model Simplification Based on Orthogonal Transformation Methods[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 481-486. doi: 10.3969/j.issn.0258-2724.2013.03.014
Citation: YAO Lan, XIAO Jian, JIANG Yulian. Interval TypeⅡ Fuzzy Model Simplification Based on Orthogonal Transformation Methods[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 481-486. doi: 10.3969/j.issn.0258-2724.2013.03.014

基于正交变换的区间Ⅱ型模糊模型结构精简

doi: 10.3969/j.issn.0258-2724.2013.03.014
基金项目: 

国家自然科学基金资助项目(51177137/E070303)

Interval TypeⅡ Fuzzy Model Simplification Based on Orthogonal Transformation Methods

  • 摘要: 针对奇异值-QR(SVD-QR)分解方法存在有效奇异值难以确定的问题,提出采用列选主QR分解方法对模糊模型结构进行分析.运用该方法分析从模糊模型抽取的2个激活强度矩阵,利用矩阵R主对角元素作为判断规则重要性的依据,根据矩阵Π中每列值为1的元素位置确定所对应的规则,从而选取重要的规则,构建简约的区间Ⅱ型模糊模型.将本文方法和奇异值-QR分解方法应用于混沌时间序列预测,同时还对比了两种方法选取的重要规则在不同样本条件下的适应能力.结果表明,两种方法选取的重要规则存在明显差异,并且采用本文方法可以获得更小的误差,平均误差为0.108 6;在不同样本条件下采用本文方法所得误差基本一致,具有更强的泛化能力.

     

  • KARNIK N N, MENDEL J M, LIANG Q. Type-2 fuzzy logic systems[J]. IEEE Transctions on Fuzzy Systems, 1999, 7(6): 643-658.
    ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning[J]. Information Sciences, 1975, 8(3): 199-249.
    LIU C F, YEH C Y, LEE S J. Application of type-2 neuro-fuzzy modeling in stock price prediction[J]. Applied Soft Computing, 2012, 12(4): 1348-1358.
    CHEN C C, VACHTSEVANOS G. Bearing condition prediction considering uncertainty: an interval type-2 fuzzy neural network approach[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(4): 509-516.
    MENDEL J M, JOHN R I. Type-2 fuzzy sets made simple[J]. IEEE Transctions on Fuzzy Systems, 2002, 10(2): 117-127.
    SETNES M, BABUSKA R. Rule base reduction: some comments on the use of orthogonal transforms[J]. IEEE Transctions on Systems, Man, and Cybernetics, Part C, 2001, 31(2): 199-206.
    YAM Y, BARANYI P, YANG C T. Reduction of fuzzy rule base via singular value decomposition[J]. IEEE Transctions on Fuzzy Systems, 1999, 7(2): 120-132.
    LIANG Qilian, MENDEL J M. Designing interval type-2 fuzzy logic systems using an SVD-QR method: rule reduction[J]. International Journal of Intelligent Systems, 2000, 15(10): 939-957.
    LIANG Qilian, MENDEL J M. Interval type-2 fuzzy logic systems: theory and design[J]. IEEE Transctions on Fuzzy Systems, 2000, 8(5): 535-550.
    JOHN R, COUPLAND S. Type-2 fuzzy logic: a historical view[J].Computational Intelligence Magazine, 2007, 2(1): 57-62.
    GOLUB G H, van LOAN C F. Matrix computations[M]. 3rd ed. Baltimore: Johns Hopkins University Press, 1996: 199-235.
    WU Dongrui, MENDEL J M. Enhanced Karnik-Mendel algorithms[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(4): 923-934.
    MACKEY M C, GLASS L. Oscillation and chaos in physiological control systems[J]. Science, 1977, 197(1): 287-289.
    丁伟,黄景春. 基于多分辨率分析的区间类型2模糊系统[J]. 西南交通大学学报,2011,46(6): 917-921.DING Wei, HUANG Jingchun. Interval type-2 fuzzy logic system based on multi-resolution analysis[J]. Journal of Southwest Jiaotong University, 2011, 46(6): 917-921.
    YAO Lan, JIANG Yulian. Short-term power load forecasting by interval type-2 fuzzy logic system[C]//Proceedings of 2nd International Conference on Information Computing and Applications. Berlin: Springer-Verlag, 2011(2): 575-582.
  • 加载中
计量
  • 文章访问数:  901
  • HTML全文浏览量:  62
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-03
  • 刊出日期:  2013-06-25

目录

    /

    返回文章
    返回