基于正交变换的区间Ⅱ型模糊模型结构精简
doi: 10.3969/j.issn.0258-2724.2013.03.014
Interval TypeⅡ Fuzzy Model Simplification Based on Orthogonal Transformation Methods
-
摘要: 针对奇异值-QR(SVD-QR)分解方法存在有效奇异值难以确定的问题,提出采用列选主QR分解方法对模糊模型结构进行分析.运用该方法分析从模糊模型抽取的2个激活强度矩阵,利用矩阵R主对角元素作为判断规则重要性的依据,根据矩阵Π中每列值为1的元素位置确定所对应的规则,从而选取重要的规则,构建简约的区间Ⅱ型模糊模型.将本文方法和奇异值-QR分解方法应用于混沌时间序列预测,同时还对比了两种方法选取的重要规则在不同样本条件下的适应能力.结果表明,两种方法选取的重要规则存在明显差异,并且采用本文方法可以获得更小的误差,平均误差为0.108 6;在不同样本条件下采用本文方法所得误差基本一致,具有更强的泛化能力.Abstract: As the effective singular value is hard to determine in the singular value decomposition-QR (SVD-QR), QR decomposition with column pivoting (pivoted-QR) was proposed to analyze the fuzzy model structure. By applying it to the two firing strength matrices of the fuzzy model, the absolute values of R-diagonal elements were used as a rule ranking index, and specific rule was located according to the position of element with the value of each column of Π equaling one. Finally, a chaos time series was predicted with the SVD-QR and pivoted-QR, and adaptability of important rules selected by both methods were compared with different samples. The simulation results indicate that the two methods are clearly distinct in the selection of a set of important fuzzy rules. The error of pivoted-QR is 0.108 6 in average, much less than that of the QR. The errors of pivoted-QR with different input samples are close, demonstrating that it has better generalization performance.
-
KARNIK N N, MENDEL J M, LIANG Q. Type-2 fuzzy logic systems[J]. IEEE Transctions on Fuzzy Systems, 1999, 7(6): 643-658. ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning[J]. Information Sciences, 1975, 8(3): 199-249. LIU C F, YEH C Y, LEE S J. Application of type-2 neuro-fuzzy modeling in stock price prediction[J]. Applied Soft Computing, 2012, 12(4): 1348-1358. CHEN C C, VACHTSEVANOS G. Bearing condition prediction considering uncertainty: an interval type-2 fuzzy neural network approach[J]. Robotics and Computer-Integrated Manufacturing, 2012, 28(4): 509-516. MENDEL J M, JOHN R I. Type-2 fuzzy sets made simple[J]. IEEE Transctions on Fuzzy Systems, 2002, 10(2): 117-127. SETNES M, BABUSKA R. Rule base reduction: some comments on the use of orthogonal transforms[J]. IEEE Transctions on Systems, Man, and Cybernetics, Part C, 2001, 31(2): 199-206. YAM Y, BARANYI P, YANG C T. Reduction of fuzzy rule base via singular value decomposition[J]. IEEE Transctions on Fuzzy Systems, 1999, 7(2): 120-132. LIANG Qilian, MENDEL J M. Designing interval type-2 fuzzy logic systems using an SVD-QR method: rule reduction[J]. International Journal of Intelligent Systems, 2000, 15(10): 939-957. LIANG Qilian, MENDEL J M. Interval type-2 fuzzy logic systems: theory and design[J]. IEEE Transctions on Fuzzy Systems, 2000, 8(5): 535-550. JOHN R, COUPLAND S. Type-2 fuzzy logic: a historical view[J].Computational Intelligence Magazine, 2007, 2(1): 57-62. GOLUB G H, van LOAN C F. Matrix computations[M]. 3rd ed. Baltimore: Johns Hopkins University Press, 1996: 199-235. WU Dongrui, MENDEL J M. Enhanced Karnik-Mendel algorithms[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(4): 923-934. MACKEY M C, GLASS L. Oscillation and chaos in physiological control systems[J]. Science, 1977, 197(1): 287-289. 丁伟,黄景春. 基于多分辨率分析的区间类型2模糊系统[J]. 西南交通大学学报,2011,46(6): 917-921.DING Wei, HUANG Jingchun. Interval type-2 fuzzy logic system based on multi-resolution analysis[J]. Journal of Southwest Jiaotong University, 2011, 46(6): 917-921. YAO Lan, JIANG Yulian. Short-term power load forecasting by interval type-2 fuzzy logic system[C]//Proceedings of 2nd International Conference on Information Computing and Applications. Berlin: Springer-Verlag, 2011(2): 575-582.
点击查看大图
计量
- 文章访问数: 901
- HTML全文浏览量: 62
- PDF下载量: 439
- 被引次数: 0