盾构隧道壁后注浆浆液毛细管渗透扩散模型
doi: 10.3969/j.issn.0258-2724.2013.03.006
Capillary Penetration Diffusion Model for Backfill Grouting of Shield Tunnel
-
摘要: 为探讨盾尾注浆扩散半径及管片所受注浆压力的计算方法,将浆液的扩散过程简化为其在土体中大量孔径不均匀的毛细管中的渗流运动,建立了浆液渗透扩散力学模型.基于柱面扩散理论,假定浆液为宾汉姆流体,引入等效孔隙率替代土体初始孔隙率,通过模拟浆液在单个毛细管中的渗透过程,得到了考虑浆液时效性的浆液扩散半径和管片所受浆液总压力的计算式.结合具体实例,讨论了浆液扩散半径、注浆对管片产生的压力与注浆压力和注浆时间的关系.分析结果表明:其他注浆参数相同时,在不同注浆压力和不同注浆时间条件下,浆液对管片产生的压力的增长速率均大于浆液扩散半径的增长速率;当盾尾建筑间隙影响厚度和土体等效孔隙率不变时,浆液流动锋面上毛细管总面积与浆液扩散半径成正比.Abstract: In order to discuss the calculating method of diffusion radius and pressure on segments of backfill grouting, a mechanical model for penetration diffusion in surrounding soils was set up by simplifying grouting penetration as transfusion in soil capillary tubes with uneven bore diameters. Based on the cylinder diffusion theory and the assumption that grout is as Bingham fluid, under the premise of bring the equivalent porosity to replace the soil porosity, the calculation formula of the diffusion radius and the pressure on segments of backfill grouting were obtained through simulating the penetration process of grout in single capillary tube. Then, the relations between grouting pressure, time, and the diffusion radius, pressure on segments were discussed through a detail example. The result shows that the increase rate of the pressure on segments is bigger than that of the grouts diffusion radius under different grouting time and pressure, and the total capillary area on the grouts flowing frontal surface is in proportion to diffusion radius when keep the influence depth of tail gap and the soil equivalent porosity unchanged.
-
Key words:
- shield tunnel /
- synchronous grouting /
- Bingham fluid /
- penetration diffusion /
- grouting pressure
-
周文波. 盾构法隧道施工技术及应用[M]. 北京:中国建筑工业出版社,2004: 21-22. 叶飞. 软土盾构隧道施工期上浮机理分析及控制研究[D]. 上海:同济大学土木工程学院,2007. 梁精华. 盾构隧道壁后注浆材料配比优化及浆体变形特性研究[D]. 南京:河海大学土木与交通学院,2006. YUKINORI K, YUTAKA S, NORIYUKI O, et al. Back-fill grouting model test for shield tunnel[J]. Quarterly Report of Railway Technical Research Institute, 1998, 39(1): 35-39. 叶飞,朱合华,何川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. 岩土力学,2009,30(5): 1307-1312.YE Fei, ZHU Hehua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. Rock and Soil Mechanics, 2009, 30(5): 1307-1312. 李志明,廖少明,戴志仁. 盾构同步注浆填充机理及压力分布研究[J]. 岩土工程学报,2010,32(11): 1752-1757.LI Zhiming, LIAO Shaoming, DAI Zhiren. Study on synchronous grouting filling patterns and pressure distribution of EPB shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1752-1757. 韩月旺,梁精华,袁小会. 盾构隧道壁后注浆体变形模型及土体位移分析[J]. 岩石力学与工程学报,2007,26(增刊2): 3646-3652.HAN Yuewang, LIANG Jinghua, YUAN Xiaohui. Deformation model of backfill grouting and ground movement analysis of shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Sup.2): 3646- 3652. 袁小会,韩月旺,钟小春. 盾构隧道壁后注浆压力分布模型[J]. 西南交通大学学报,2011,46(1): 18-25.YUAN Xiaohui, HAN Yuewang, ZHONG Xiaochun. Pressure distribution model of simultaneous backfill grouting of shield tunnel[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 18-25. 范昭平,韩月旺,方忠强. 盾构壁后注浆压力分布计算模型[J]. 公路交通科技,2011(3): 95-100.FAN Zhaoping, HAN Yuewang, FANG Zhongqiang. Calculating model of backfill grouting pressure distribution for shield tunnel[J]. Journal of Highway and Transportation Research and Development, 2011(3): 95-100. 黄宏伟,刘遹剑,谢雄耀. 盾构隧道壁后注浆效果的雷达探测研究[J]. 岩土力学,2003,14(增刊): 353-356.HUANG Hongwei, LIU Yujian, XIE Xiongyao. Application of GPR to grouting distribution behind segment in shield tunnel[J]. Rock and Soil Mechanics, 2003, 14(Sup.): 353-356. 邓宗伟,冷伍明,陈建平. 盾构隧道壁后注浆作用机制的计算研究[J]. 塑性工程学报,2005,12(6): 114-117.DENG Zongwei, LENG Wuming, CHEN Jianping. The calculating research on the mechanism of shield tunnel back filled grouting[J]. Journal of Plasticity Engineering, 2005, 12(6): 114-117. 岩土注浆理论与工程实例协作组. 岩土注浆理论与工程实例[M]. 北京:科学出版社,2001: 49-51. 杨秀竹,王星华,雷金山. 宾汉体浆液扩散半径的研究及应用[J]. 水利学报,2004,35(6): 75-79.YANG Xiuzhu, WANG Xinghua, LEI Jinsha. Study on grouting diffusion radius of Bingham fluids[J]. Journal of Hydraulic Engineering, 2004, 35(6): 75-79. 杨志全,侯克鹏,郭婷婷,等. 基于考虑时变性的宾汉姆流体的渗透注浆机理研究[J]. 四川大学学报:工程科学版,2011,43(增刊1): 67-72.YANG Zhiquan, HOU Kepeng, GUO Tingting, et al. Study on penetration grouting mechanism based on Bingham fluid of time-dependent behavior[J]. Journal of Sichuan University: Engineering Science Edition, 2011, 43(Sup.1): 67-72. 孔祥言. 高等渗流力学[M]. 合肥:中国科学技术大学出版社,2010: 534-537.
点击查看大图
计量
- 文章访问数: 1249
- HTML全文浏览量: 70
- PDF下载量: 378
- 被引次数: 0