• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

两阶段混合粒子群优化聚类

王纵虎 刘志镜 陈东辉

王纵虎, 刘志镜, 陈东辉. 两阶段混合粒子群优化聚类[J]. 西南交通大学学报, 2012, 25(6): 1034-1040,1063. doi: 10.3969/j.issn.0258-2724.2012.06.020
引用本文: 王纵虎, 刘志镜, 陈东辉. 两阶段混合粒子群优化聚类[J]. 西南交通大学学报, 2012, 25(6): 1034-1040,1063. doi: 10.3969/j.issn.0258-2724.2012.06.020
WANG Zonghu, LIU Zhijing, CHEN Donghui. Two-Step Hybrid PSO-Based Clustering Algorithm[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 1034-1040,1063. doi: 10.3969/j.issn.0258-2724.2012.06.020
Citation: WANG Zonghu, LIU Zhijing, CHEN Donghui. Two-Step Hybrid PSO-Based Clustering Algorithm[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 1034-1040,1063. doi: 10.3969/j.issn.0258-2724.2012.06.020

两阶段混合粒子群优化聚类

doi: 10.3969/j.issn.0258-2724.2012.06.020
基金项目: 

国家科技支撑计划资助项目(2012BAH01F00)

国家自然科学基金资助项目(61173091)

Two-Step Hybrid PSO-Based Clustering Algorithm

  • 摘要: 为解决数据集样本维数较高时已有粒子群优化K均值算法计算速度较慢且聚类结果不稳定的问题,利用第1阶段聚类层次凝聚聚类获得准确率较高的子簇集合,作为粒子群优化K均值聚类算法初始聚类中心的搜索空间,进行第2阶段聚类.提出了一种简化的粒子编码方法,以减小样本维数对计算复杂度的影响;引入混沌的思想,以保持粒子种群的多样性,从而避免粒子群优化算法可能出现的早熟现象.通过两阶段聚类,有效地融合了粒子群优化、层次聚类与划分聚类算法的优点.在多个UCI数据集上的聚类结果表明,与几种对比算法聚类结果的最优值相比,其纯度分别提高了1%~8%,且耗时减少50%以上.

     

  • 王维博,冯全源. 基于改进粒子群算法的工程项目综合优化[J]. 西南交通大学学报,2011,46(1): 76-83. WANG Weibo, FENG Quanyuan. Synthesis optimization for construction project based on modified particle swarm optimization algorithm[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 76-83.
    秦钰,荆继武,向继,等. 基于优化初始类中心点的K-means改进算法[J]. 中国科学院研究生院学报,2007,24(6): 771-776. QIN Yu, JING Jiwu, XIANG Ji, et al. An improved K-means algorithm based on optimizing initial points[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24(6): 771-776.
    汪中,刘贵全,陈恩红. 一种优化初始中心点的K-means算法[J]. 模式识别与人工智能,2009,22(2):299-304. WANG Zhong, LIU Guiquan, CHEN Enhong. A K-means algorithm based on optimized initial center points[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(2): 299-304.
    KENNEDY J, EBERHART R C. Particle swarm optimization//Proceedings of IEEE Internal Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948.
    RANA S, JASOLA S, KUMAR R. A review on particle swarm optimization algorithms and their applications to data clustering[J]. Artificial Intelligence Review, 2011, 35(3): 211-222.
    Vander MERWE D W, ENGELHRECHT A P. Data clustering using particle swarm optimization//Proceedings of Evolutionary Computation. Piscataway: IEEE Press, 2003: 215-220.
    ESMIN A A A, PEREIRA D L, de ARAUJO F P A. Study of different approach to clustering data by using the particle swarm optimization algorithm//IEEE World Congress on Computational Intelligence. Piscataway:IEEE Press, 2008: 1817-1822.
    刘靖明,韩丽川,侯立文. 基于粒子群的K-均值聚类算法[J]. 系统工程理论与实践,2005,6(3): 55-58. LIU Jingming, HAN Lichuan, HOU Liwen. Clustering analysis based on particle swarm optimization algorithm[J]. System Engineering: Theory and Practice, 2005, 6(3): 55-58.
    CUI X H, POLOK T E. Document clustering using particle swarm optimization//Swarm Intelligence Symposium 2005. Piscataway: IEEE Press, 2005: 185-191.
    陶新民,徐晶,杨立标,等. 一种改进的粒子群和K均值混合聚类算法[J]. 电子与信息学报,2010,32(1): 92-97. TAO Xinmin, XU Jing, YANG Libiao, et al. Improved cluster algorithm based on K-means and particle swarm optimization[J]. Journal of Electronics & Information Technology, 2010, 32(1): 92-97.
    巩敦卫,蒋余庆,张勇,等. 基于微粒群优化聚类数目的K-均值算法[J]. 控制理论与应用,2009,26(10): 1175-1179. GONG Dunwei, JIANG Yuqing, ZHANG Yong, et al. K-mean algorithm for optimizing the number of clusters based on particle swarm optimization[J]. Control Theory & Applications, 2009, 26(10): 1175-1179.
    朱红求,阳春华,桂卫华,等. 一种带混沌变异的粒子群优化算法[J]. 计算机科学,2010,37(3): 215-217. ZHU Hongqiu, YANG Chunhua, GUI Weihua, et al. Particle swarm optimization with chaotic mutation[J]. Computer Science, 2010, 37(3): 215-217.
    吕振肃,侯志容. 自适应变异的粒子群优化算法[J]. 电子学报,2004,32(1): 416-420. LV Zhensu, HOU Zhirong. Particle swarm optimization with adaptive mutation[J]. Acta Electronica Sinica, 2004, 32(1): 416-420.
    FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.
  • 加载中
计量
  • 文章访问数:  1152
  • HTML全文浏览量:  58
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-07
  • 刊出日期:  2012-12-25

目录

    /

    返回文章
    返回