Calculation of Braking Force of Continuous Welded Rail on Large-Span Steel Truss Cable-Stayed Bridge
-
摘要: 为探讨大跨度钢桁斜拉桥上无缝线路制动力的传力机制,基于有限元法和梁轨相互作用理论,建立了反映斜拉索、主塔、半漂浮体系等桥梁特征的梁轨纵向相互作用平面模型,分析了斜拉索刚度、主塔刚度以及半漂浮体系中粘滞阻尼器对制动力的影响,并提出了制动力的简化算法.研究结果表明:制动力满足斜拉桥上铺设无缝线路的要求,且其分布规律与普通桥上相同;粘滞阻尼器对制动荷载下斜拉桥上无缝线路梁轨相互作用的改善较明显,有效降低了梁轨相对位移,减小了制动力;与主塔刚度相比,斜拉索刚度对桥上无缝线路制动力的影响较大,因此,设计桥上无缝线路时,可只考虑斜拉索刚度的影响.Abstract: In order to probe into the transmission mechanism of braking force on continuous welded rail (CWR) on a large-span steel truss cable-stayed bridge, a plane model for bridge-rail interaction was established based on the finite element method and the bridge-rail interaction theory. In this model, all structural characteristics, such as steel truss, stay cables, main towers, and viscous dampers, are involved. The influences of stay cable stiffness, main tower stiffness and viscous dampers on the braking force were analyzed, and a simplified algorithm for the braking force was proposed. The results show that braking force can meet the demands of paving CWR on cable-stayed bridges, and its distribution regularity is the same as that on conventional bridges; viscous dampers improve the bridge-rail interaction in train braking situation by reducing bridge-rail relative displacement and braking force; compared with the stiffness of main towers, the stiffness of stay cables has a great influence on the braking force, so it should be taken into account in CWR design of a cable-stayed bridge.
-
林元培. 斜拉桥[M]. 北京:人民交通出版社,2004: 111-163. TROITSKY M S. Cable-stayed bridges[M]. Oxford: BSP Professional Books, 1988: 21-50. FERREIRA F L S, SIMOES L M C. Optimum design of a controlled cable stayed bridge subject to earthquakes[J]. Structural and Multidisciplinary Optimization, 2011, 44(4): 517-528. BENEDETTINI F, GENTILE C. Operational modal testing and FE model tuning of a cable-stayed bridge[J]. Engineering Structures, 2011, 33(6): 2063-2073. GENTILE C, CABRERA F M Y. Dynamic investigation of a repaired cable-stayed bridge[J]. Earthquake Engineering Structure Dynamics, 1997, 26(1): 41-59. LIU Jia, QU Weilian, PI Yonglin. Active/robust control of longitudinal vibration response of floating-type cable-stayed bridge induced by train braking and vertical moving loads[J]. Journal of Vibration and Control, 2010, 16(6): 801-825. 广钟岩,高慧安. 铁路无缝线路[M]. 北京:中国铁道出版社,2005: 193-264. 任娟娟,王平,刘学毅,等. 制动力作用下桥上道岔区纵连无砟轨道受力与位移[J]. 西南交通大学学报,2011,46(1): 49-55. REN Juanjuan, WANG Ping, LIU Xueyi, et al. Braking forces and displacements of longitudinally coupled ballastless welded turnout on bridges[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 49-55. 蔡成标. 高速铁路特大桥上无缝线路纵向附加力计算[J]. 西南交通大学学报,2003,38(5): 609-614. CAI Chengbiao. Calculation of additional longitudinal forces in continuously welded rails on supper-large bridges of high-speed railways[J]. Journal of Southwest Jiaotong University, 2003, 38(5): 609-614. 王勖成. 有限单元法[M]. 北京:清华大学出版社,2003: 38-88. 龚曙光,谢桂兰. ANSYS操作命令与参数化编程[M]. 北京:机械工业出版社,2004: 12-74. 王新敏. ANSYS工程结构数值分析[M]. 北京:人民交通出版社,2007: 6-14. 马占国. 中小跨度长联连续梁桥桥上无缝线路纵向力的研究[J]. 中国铁道科学,2003,24(1): 59-64. MA Zhanguo. Research on longitudinal force of CWR on multi-span bridge with continuous beam[J]. China Railway Science, 2003, 24(1): 59-64. 徐庆元,陈秀方,周小林,等. 桥上无缝线路附加力计算模型研究[J]. 长沙铁道学院学报,2003,21(3): 14-18. XU Qingyuan, CHEN Xuefang, ZHOU Xiaolin, et al. Investigation on mechanics model of additional longitudinal forces transmission between continuously welded rails and bridges[J]. Journal of Changsha Railway University, 2003, 21(3): 14-18.
点击查看大图
计量
- 文章访问数: 1833
- HTML全文浏览量: 78
- PDF下载量: 699
- 被引次数: 0