子波变换及其在股市数据分析中的应用
WaveletTransform and Its Application in StockMarket Data Analysis
-
摘要: 把股票日收益率看作一维时间信号,通过子波变换与多尺度分析,求出了体现股市数据奇异性的 Lipschitz指数α。α为负表明在奇异点比不连续更加奇异,证明了股票价格的变化是分形的。同时,由文中图示 可知,在尺度s很大时,子波变换和多尺度分析可以将股市数据中偶然因素造成的涨跌消除,具有突出主要因素 和宏观突变点的特点,这一点对于从宏观上预测股价的走势有重要意义。Abstract: Alipschitz exponentα, which reflects the singlaritynature of stock data, is obtainedwithwavelet transform and muti-scale analysis by regarding stock day profit ratio as a one-dimentional time signal.αin this paper is negative, showing that the singularity is more singular than non-continuum. This proves that the variation of stock prices is fractal. At the same time, it is pointed out that when scalesis very big, wavelet transform and multi-scale analysis can remove the up-and-down of stock market data caused by accidental factors and give prominence to primary factors and macroscopic sudden change points. This is important in predicting the variation trend of stock prices frommacroscopic aspect.
-
Key words:
- stock market /
- return /
- singularity /
- wavelet transform /
- multi-scale analysis /
- Lipschitz exponent
点击查看大图
计量
- 文章访问数: 1335
- HTML全文浏览量: 50
- PDF下载量: 101
- 被引次数: 0