• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

时滞Cohen-Grossberg神经网络的全局稳定性

龙兰 徐晓惠 张继业

龙兰, 徐晓惠, 张继业. 时滞Cohen-Grossberg神经网络的全局稳定性[J]. 西南交通大学学报, 2008, 21(3): 381-386.
引用本文: 龙兰, 徐晓惠, 张继业. 时滞Cohen-Grossberg神经网络的全局稳定性[J]. 西南交通大学学报, 2008, 21(3): 381-386.
LONG Lan, XU Xiaohui, ZHANG Jiye. Global Stability Analysis of Cohen-Grossberg Neural Networks with Unbounded Time Delays[J]. Journal of Southwest Jiaotong University, 2008, 21(3): 381-386.
Citation: LONG Lan, XU Xiaohui, ZHANG Jiye. Global Stability Analysis of Cohen-Grossberg Neural Networks with Unbounded Time Delays[J]. Journal of Southwest Jiaotong University, 2008, 21(3): 381-386.

时滞Cohen-Grossberg神经网络的全局稳定性

基金项目: 

国家自然科学基金资助项目(1077215250525518)

教育部留学回国人员科研启动基金

详细信息
    作者简介:

    龙兰(1963- ),女,讲师,研究方向为系统稳定性分析与控制

    通讯作者:

    张继业(1965- ),教授,博士,研究方向为系统稳定性分析与控制,电话:028-86466040,E-mail: jyzhang@home.swjtu.edu.cn

Global Stability Analysis of Cohen-Grossberg Neural Networks with Unbounded Time Delays

  • 摘要: 为将神经网络应用于最优化问题的求解,对具有无穷时滞的Cohen-Grossberg神经网络平衡点的存在性、唯一性和全局渐近稳定性进行了探讨.在不假设激活函数有界性、单调性和可微性的情况下,得到了系统平衡点的存在性条件.利用向量Liapunov函数法,构造适当的含有无穷时滞的微分-积分不等式,并分析了微分-积分不等式的稳定性,得到了Cohen-Grossberg神经网络系统全局渐近稳定性的判据.通过判断由神经网络的权系数、自反馈函数以及激励函数构造的矩阵是否为M-矩阵,即可得到Cohen-Grossberg神经网络系统的全局渐近稳定性.最后给出了一个算例,以说明该判据的正确性.

     

  • COHEN M A,GROSSBERG S.Absolute stability and global pattern formation and parallel memory storage by competitive neural networks[J].IEEE Transactions on Systems,Man and Cybernetics Society,1983,13(5):815-825.[2] FORTI M,TESI A.New conditions for global stability of neural networks with application to linear and quadratic programming problems[J].IEEE Transactions on Circuits and Systems-I,1995,42(7):354-366.[3] ARIK S,TAVANOGLU V.On the global asymptotic stability of delayed cellular neural networks[J].IEEE Transactions on Circuits and Systems-I,2000,47(4):571-574.[4] GOPALSAMY K,HE X.Stability in asymmetric Hopfield nets with transmission delays[J].Physica D,1994,76(4):344-358.[5] SREE H R V,PHANEENDRA B R M.Global dynamics of bidirectional associative memory neural networks involving transmission delays and dead zones[J].Neural Networks,1999,12(3)455-465.[6] ZHANG Jiye,SUDA Y,IWASA T.Absolutely exponential stability of a class of neural networks with unbounded delay[J].Neural Networks,2004,17(3):391-397.[7] ZHANG Jiye.Globally exponential stability of neural networks with variable delays[J].IEEE Transactions on Circuits and Systems-I,2003,50(2):288-291.[8] ZHANG Jiye,SUDA Y,KOMINE H.Global exponential stability of cohen-grossberg neural networks with variable delays[J].Physics Letter A,2005,338(1):44-50.[9] ZHANG Jiye.Global stability analysis in cellular neural networks with unbounded time delays[J].Applied Mathematics and Mechanics-English Edition,2004,25 (6):686-693.[10] 舒仲周,张继业,曹登庆.运动稳定性[M].北京:中国铁道出版社,2001:148-167.[11] 张克跃,任殿波,张继业.分布时滞动态神经网络的全局指数稳定性[J].西南交通大学学报,2008,43(1):57-61.ZHANG Keyue,REN Dianbo,ZHANG Jiye.Global exponential stability of dynamic neural networks with distributed delays[J].Journal of Southwest Jiaotong University,2008,43(1):57-61.[12] SILJIAK D D.Large-scale dynamic systems-stability and structure[M].New York:Elsevier North-Holland Inc.,1978:165-171.[13] 张继业,杨翊仁,曾京.无限维关联系统的弦稳定性[J].应用数学和力学,2000,21(7):715-720. ZHANG Jiye,YANG Yiren,ZENG Jing.String stability of infinite interconnected system[J].Applied Mathematics and Mechanics,2000,21(7):715-720.[14] HALE J K,LUNEL S M V.Introduction to functional differential equations[M].New York:Springer-Verlag,1993:130-150.
  • 加载中
计量
  • 文章访问数:  2025
  • HTML全文浏览量:  75
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-07-23
  • 刊出日期:  2008-06-25

目录

    /

    返回文章
    返回