Citation: | LIU Yongtao, GAO Longxin, FANG Tengyuan, YAN Xingpei, YANG Jingshuai, HUA Haining. Research on Vehicle Head-on Collision Accident Reconstruction System Based on Inverse Analysis[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240169 |
To enhance the precision and effectiveness of vehicle collision accident reconstruction, equations for calculating collision velocities were formulated based on the conservation laws of momentum and angular momentum. Using rotational transformations of the collision coordinate system, an analytical model of the vehicle's instantaneous collision dynamics was developed. Subsequently, the collision process was segmented for analysis, leading to the development of a three-dimensional dynamic model of the vehicle body. Utilizing 3DMAX and OpenGL graphics technology, along with fundamental database techniques, a collision reconstruction system was designed and validated through simulation analyses of real-world head-on collision cases to verify its accuracy and effectiveness. The findings reveal that the system achieves an average relative error of less than 5.1% in simulated vehicle speeds, with an average trajectory alignment correlation of 0.85. This system effectively resolves the analytical challenges of inverse uncertainty equations at the moment of collision, significantly enhancing the precision of relevant parameter calculations in vehicle collisions, thereby demonstrating high practicality and user-friendliness.
[1] |
国家统计局. 2022年中国统计年鉴[M]. 北京:中国统计出版社,2023.
|
[2] |
朱彤,魏雯,林淼,等. 道路交通安全反事实仿真评估技术综述与展望[J]. 中国安全科学学报,2022,32(7): 128-135.
ZHU Tong, WEI Wen, LIN Miao, et al. Review and prospect of counterfactual simulation for road traffic safety[J]. China Safety Science Journal, 2022, 32(7): 128-135.
|
[3] |
何庆龄,裴玉龙,刘静,等. 基于WOA-LSSVM的城市道路交通事故严重度识别[J]. 中国安全生产科学技术,2023,19(9): 176-182.
HE Qingling, PEI Yulong, LIU Jing, et al. Recognition of urban road traffic accident severity based on WOA-LSSVM[J]. Journal of Safety Science and Technology, 2023, 19(9): 176-182.
|
[4] |
罗文慧,蔡凤田,吴初娜,等. 基于文本挖掘的道路运输安全风险源辨识模型[J]. 西南交通大学学报,2021,56(1): 147-152.
LUO Wenhui, CAI Fengtian, WU Chuna, et al. Text-mining based risk source identification model for transportation safety[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 147-152.
|
[5] |
何永旺,曾晓锋,闫文,等. 基于PC-Crash软件的道路交通事故再现技术研究进展[J]. 法医学杂志,2018,34(3): 276-279,285. doi: 10.12116/j.issn.1004-5619.2018.03.012
HE Yongwang, ZENG Xiaofeng, YAN Wen, et al. Research progress of traffic accident reconstruction technology based on PC-crash software[J]. Journal of Forensic Medicine, 2018, 34(3): 276-279,285. doi: 10.12116/j.issn.1004-5619.2018.03.012
|
[6] |
黎晓龙. 基于EDR车辆事件数据的PC-CRASH交通事故重建方法验证研究[J]. 中国人民公安大学学报(自然科学版),2020,26(3): 41-48. doi: 10.3969/j.issn.1007-1784.2020.03.007
LI Xiaolong. Research on the validation of PC-CRASH traffic accident reconstruction method based on EDR vehicle incident data[J]. Journal of People’s Public Security University of China (Science and Technology), 2020, 26(3): 41-48. doi: 10.3969/j.issn.1007-1784.2020.03.007
|
[7] |
童小波,刘盛雄,尹志勇,等. 基于PC Crash的摩托车-行人碰撞事故分析重建[J]. 重庆理工大学学报(自然科学),2018,32(2): 54-62.
TONG Xiaobo, LIU Shengxiong, YIN Zhiyong, et al. Analysis and reconstruction of motorcycle-pedestrian crash based on PC crash[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(2): 54-62.
|
[8] |
黄西子,黄淑萍. 高速道路追尾感知PC-Crash仿真与统计建模[J]. 中国安全科学学报,2020,30(5): 143-148.
HUANG Xizi, HUANG Shuping. Freeway rear-end perception model based on PC-Crash simulation and statistical analysis[J]. China Safety Science Journal, 2020, 30(5): 143-148.
|
[9] |
张文会,苏永民,孙舒蕊. 偏置追尾事故车辆运动学参数仿真研究[J]. 系统仿真学报,2020,32(5): 848-855.
ZHANG Wenhui, SU Yongmin, SUN Shurui. Simulation and analysis of kinematic parameters of vehicle offset and rear-end collision accident[J]. Journal of System Simulation, 2020, 32(5): 848-855.
|
[10] |
SCHLÖGL M, STÜTZ R. Methodological considerations with data uncertainty in road safety analysis[J]. Accident Analysis & Prevention, 2019, 130: 136-150.
|
[11] |
ZHENG L L, DING T Q, XI J F, et al. Simulation analysis of traffic accidents reconstruction based on reverse-reasoning method[C]//2009 International Conference on Electronic Commerce and Business Intelligence. Beijing: IEEE, 2009: 168-171.
|
[12] |
CAO Y, YE X W, HAN G. A method for calculating the velocity of corner-to-corner rear-end collisions of vehicles based on collision deformation analysis[J]. Applied Sciences, 2021, 11(22): 10964. 1-10964.11. doi: 10.3390/app112210964
|
[13] |
CAO Y, LUO Y F. The synthesized method based on classical mechanics and finite element for vehicle collision accident reconstruction analysis[J]. International Journal of Crashworthiness, 2022, 27(6): 1790-1797. doi: 10.1080/13588265.2021.2008741
|
[14] |
刘永涛,方腾源,赵俊玮,等. 基于逆算法与试算法的车辆碰撞车速对比研究[J]. 中国安全科学学报,2021,31(1): 138-144.
LIU Yongtao, FANG Tengyuan, ZHAO Junwei, et al. Comparative study on vehicle-to-vehicle collision speed based on inverse algorithm and trial algorithm[J]. China Safety Science Journal, 2021, 31(1): 138-144.
|
[15] |
王成铭,范颖,邹冬华,等. 基于遗传算法的高精度事故重建与损伤分析[J]. 汽车工程,2021,43(12): 1787-1792.
WANG Chengming, FAN Ying, ZOU Donghua, et al. High-accuracy accident reconstruction and injury analysis based on genetic algorithm[J]. Automotive Engineering, 2021, 43(12): 1787-1792.
|
[16] |
AHMED S S, COHEN J, ANASTASOPOULOS P C. A correlated random parameters with heterogeneity in means approach of Deer-vehicle collisions and resulting injury-severities[J]. Analytic Methods in Accident Research, 2021, 30: 100160. 1-100160.17. doi: 10.1016/j.amar.2021.100160
|
[17] |
PROCHOWSKI L, ZIUBIŃSKI M, DZIEWIECKI K, et al. Impact energy and the risk of injury to motorcar occupants in the front-to-side vehicle collision[J]. Nonlinear Dynamics, 2022, 110(4): 3333-3354. doi: 10.1007/s11071-022-07779-8
|
[18] |
DEPRIANTO E. Pre-Collision Safety Risk Assessment Using Multi-Body Simulation[D]. ‘Malaysia’ : University of Malaya, 2021.
|
[19] |
BRACH M, BRACH R M, MASON J. Vehicle accident analysis and reconstruction methods[M]. Pennsylvania: SAE International, 2022.
|
[20] |
WANG C, WANG Z P, ZHANG L, et al. Post-impact stability control for road vehicles: state-of-the-art methodologies and perspectives[J]. IEEE Transactions on Intelligent Transportation Systems, 25(8): 8295-8312.
|
[21] |
GIM G H. Critical Issue of Tire Force & Moment Model.[R]. [s.l.: s.n.], 2023.
|
[22] |
GIM G H. The Smart Tire Technology for AI Virtual Process. ResearchGate [R]. [s.l.: s.n.], 2022.
|
[23] |
张健,张鑫,李江. 碰撞前车速计算误差的成因及处理方法[J]. 西南交通大学学报,2019,54(5): 1073-1078. doi: 10.3969/j.issn.0258-2724.20170562
ZHANG Jian, ZHANG Xin, LI Jiang. Origin and solution of pre-crash speed calculation error[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1073-1078. doi: 10.3969/j.issn.0258-2724.20170562
|
[24] |
中华人民共和国公安部. 道路交通事故现场图绘制:GA/T 49—2019[S]. 北京:中国标准出版社,2019.
|
[25] |
李璐江,路深,卜晓兵,等. MPDB测试与车对车碰撞相关性研究[J]. 计算机仿真,2023,40(2): 161-166. doi: 10.3969/j.issn.1006-9348.2023.02.029
LI Lujiang, LU Shen, BU Xiaobing, et al. Research on correlation between MPDB test and vehicle to vehicle crash[J]. Computer Simulation, 2023, 40(2): 161-166. doi: 10.3969/j.issn.1006-9348.2023.02.029
|
[26] |
唐洪斌,张君媛,刘国军. 正面碰撞等级预估方法[J]. 汽车工程,2022,44(3): 392-398.
TANG Hongbin, ZHANG Junyuan, LIU Guojun. A method for predicting frontal crash grade[J]. Automotive Engineering, 2022, 44(3): 392-398.
|
[27] |
ZIAKOPOULOS A, TSELENTIS D, KONTAXI A, et al. A critical overview of driver recording tools[J]. Journal of Safety Research, 2020, 72: 203-212. doi: 10.1016/j.jsr.2019.12.021
|