• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
YANG Chao, ZHU Tao, YANG Bing, YANG Guangwu, LU Liantao, XIAO Shoune. Generalized Multi-step Explicit Integration Method in Structural Dynamics[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 133-140. doi: 10.3969/j.issn.0258-2724.2017.01.019
Citation: YANG Chao, ZHU Tao, YANG Bing, YANG Guangwu, LU Liantao, XIAO Shoune. Generalized Multi-step Explicit Integration Method in Structural Dynamics[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 133-140. doi: 10.3969/j.issn.0258-2724.2017.01.019

Generalized Multi-step Explicit Integration Method in Structural Dynamics

doi: 10.3969/j.issn.0258-2724.2017.01.019
  • Received Date: 08 Mar 2016
  • Publish Date: 25 Feb 2017
  • In order to develop new time integration algorithms, a generalized multi-step explicit integration method (GMEM) was proposed by means of weighting independent variables, accelerations. Firstly, a general integration format was provided based on the acceleration explicit method. Furthermore, the stability, numerical dissipation, numerical dispersion and accuracy were analyzed. Finally, two numerical examples were employed to contrastively analyze three kinds of GMEMs (GMEM1, GMEM2 and GMEM3-2), the HHT- method and the Newmark method. The results indicate that the GMEM is conditionally stable. The spectral radius is identically equal to 1 in the system without damping. The GMEM of three steps can achieve the highest accuracy of three order. There is not numerical dissipation for the GMEM of three steps in undamped systems. The root mean square error of the GMEM2 is approximately half of that of the Newmark method, and 1.8 times that of the GMEM3-2 approximately.

     

  • loading
  • 张雄,王天舒. 计算动力学[M]. 北京:清华大学出版社,2007:147-155.
    HOUBOLT J C. A recurrence matrix solution for the dynamic response of elastic aircraft[J]. Journal of Aeronautical Sciences, 1950(17):540-550.
    PARK K C. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations[J]. Journal of Applied Mechanics, 1975, 42(2):464-470.
    邵慧萍,蔡承文. 结构动力学方程数值积分的三参数算法[J]. 应用力学学报,1988,5(4):76-81. SHAO Huiping, CAI Chengwen. A three parameters algorithm for numerical integration of structural dynamic equations[J]. Chinese Journal of Applied Mechanics, 1988, 5(4):76-81.
    LEONTIEV V A. Extension of LMS formulations for L-stable optimal integration methods with U0-V0 overshoot properties in structural dynamics:the level-symmetric (LS) integration methods[J]. International Journal for Numerical Methods in Engineering, 2007, 71(13):1598-1632.
    CHUNG J, HULBERT G M. A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-method[J]. Journal of Applied Mechanics, 1993, 60(2):371-375.
    ZHAI W M. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Journal for Numerical in Engineering, 1996, 39:4199-4214.
    ZHAI W M, WANG K Y, CAI C B. Fundamentals of vehicle-track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47(11):1349-1376.
    翟婉明,夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京:科学出版社,2011:107-124.
    ZHONG W X, WILLIAMS F W. A precise time step integration method[J]. Journal of Mechanical Engineering Science, 1994, 208:427-430.
    吕和祥,于洪洁,裘春航. 精细积分的非线性动力学积分方程及其解法[J]. 固体力学学报,2001,22(3):303-308. L Hexiang, YU Hongjie, QIU Chunhang. An integral equation of nonlinear dynamics and its solution method[J]. Acta Mechanica Solida Sinica, 2001, 22(3):303-308.
    CHANG S Y. An explicit method with improved stability property[J]. International Journal for Numerical Methods in Engineering, 2009, 77(8):1100-1120.
    CHANG S Y. A family of noniterative integration methods with desired numerical dissipation[J]. International Journal for Numerical Methods in Engineering, 2014, 100(1):62-86.
    CHANG S Y. A new family of explicit methods for linear structural dynamics[J]. Computers Structures, 2010, 88(11/12):755-772.
    杨超,肖守讷,鲁连涛. 基于双步长的显式积分算法[J]. 振动与冲击,2015,34(1):29-32. YANG Chao, XIAO Shoune, LU Liantao. Explicit integration algorithm based on double time steps[J]. Journal of Vibration and Shock, 2015, 34(1):29-32.
    杨超,肖守讷,阳光武,等. 一类非耗散的显式时间积分方法[J]. 振动工程学报,2015,28(3):441-448. YANG Chao, XIAO Shoune, YANG Guangwu, et al. Non-dissipative explicit time integration methods of the same class[J]. Journal of Vibration Engineering, 2015, 28(3):441-448.
    侯博文,高亮,刘启宾. 重载车辆-道岔耦合动力特性及岔区加强研究[J]. 西南交通大学学报,2015,50(4):604-609. HOU Bowen, GAO Liang, LIU Qibin. Vehicle-turnout coupled dynamics and improvement measures for heavy haul lines[J]. Journal of Southwest Jiaotong University, 2015, 50(4):604-609.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(531) PDF downloads(306) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return