• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
SUN Yongxin, LIN Pengzhen, YANG Zijiang. Calculation Method for Reinforcement Stress in Ultra-High Performance Concrete Beams Considering Bond-Slip Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1058-1067. doi: 10.3969/j.issn.0258-2724.20230130
Citation: SUN Yongxin, LIN Pengzhen, YANG Zijiang. Calculation Method for Reinforcement Stress in Ultra-High Performance Concrete Beams Considering Bond-Slip Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1058-1067. doi: 10.3969/j.issn.0258-2724.20230130

Calculation Method for Reinforcement Stress in Ultra-High Performance Concrete Beams Considering Bond-Slip Effect

doi: 10.3969/j.issn.0258-2724.20230130
  • Received Date: 26 Mar 2023
  • Rev Recd Date: 13 Jul 2023
  • Available Online: 17 Jun 2024
  • Publish Date: 30 Oct 2023
  • Four-point bending tests were conducted on six ultra-high performance concrete T-shaped (UHPC-T) section beams to establish a reinforcement stress calculation method for reinforced UHPC beams and study the variation law of reinforcement stress. Based on the mechanism of force balance and deformation coordination between reinforcement and UHPC, a reinforcement stress calculation formula was derived using the differential equations of equilibrium, deformation, and bond-slip established by micro elements, which could comprehensively reflect the influence of bond-slip between reinforcement and UHPC interfaces and the contribution of steel fibers to tensile strength. By simplifying the calculation of the strain non-uniformity coefficient and the reinforcement stress in cracked sections, a simplified formula for reinforcement stress suitable for engineering applications was proposed. The results show that the increase in reinforcement stress under unit load decreases with the increase in reinforcement ratio, but it is not related to the change in steel fiber volume fraction. Compared with ordinary concrete beams, the reinforcement stress in UHPC beams is relatively small in the cracked section, but the uneven distribution of reinforcement stress between adjacent cracks is intensified. The calculation value of the suggested formula for reinforcement stress is in good agreement with the experimental values in this article and existing literature. The average ratio of the calculated value of the simplified formula for reinforcement stress to the experimental value is 1.03, and the coefficient of variation is 0.06, indicating that this simplified formula can be used for calculating reinforcement stress in UHPC beams.

     

  • loading
  • [1]
    SHIRAI K, YIN H, TEO W. Flexural capacity prediction of composite RC members strengthened with UHPC based on existing design models[J]. Structures, 2020, 23: 44-55. doi: 10.1016/j.istruc.2019.09.017
    [2]
    ELSAYED M, BADAWY S, TAYEH B A, et al. Shear behaviour of ultra-high performance concrete beams with openings[J]. Structures, 2022, 43(6): 546-558.
    [3]
    WANG J Q, QI J N, TONG T, et al. Static behavior of large stud shear connectors in steel-UHPC composite structures[J]. Engineering Structures, 2019, 178: 534-542. doi: 10.1016/j.engstruct.2018.07.058
    [4]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社,2010.
    [5]
    邱明红,邵旭东,胡伟业,等. 钢筋UHPC受弯构件裂缝宽度计算方法研究[J]. 土木工程学报,2020,53(10): 89-98,119.

    QIU Minghong, SHAO Xudong, HU Weiye, et al. Calculation method for crack width of reinforced UHPC flexural components[J]. China Civil Engineering Journal, 2020, 53(10): 89-98,119.
    [6]
    邱明红,邵旭东,胡伟业,等. 钢筋UHPC矩形截面受弯构件的钢筋应力简化计算[J]. 中国公路学报,2021,34(8): 106-117.

    QIU Minghong, SHAO Xudong, HU Weiye, et al. Simplified calculation of reinforcement stress in reinforced UHPC bending members with rectangular sections[J]. China Journal of Highway and Transport, 2021, 34(8): 106-117.
    [7]
    郑文忠,李莉,卢姗姗. 钢筋活性粉末混凝土简支梁正截面受力性能试验研究[J]. 建筑结构学报,2011,32(6): 125-134.

    ZHENG Wenzhong, LI Li, LU Shanshan. Experimental research on mechanical performance of normal section of reinforced reactive powder concrete beam[J]. Journal of Building Structures, 2011, 32(6): 125-134.
    [8]
    赵国藩,王清湘. 钢筋混凝土构件裂缝宽度分析的应力图形和计算模式[J]. 大连工学院学报,1984,24(4): 87-94.

    ZHAO Guofan, WANG Qingxiang. Stress distribution and calculation formula for crack width analysis of reinforced concrete members[J]. Journal of Dalian University of Technology, 1984, 24(4): 87-94.
    [9]
    朱虹,董志强,吴刚,等. FRP筋混凝土梁的刚度试验研究和理论计算[J]. 土木工程学报,2015,48(11): 44-53.

    ZHU Hong, DONG Zhiqiang, WU Gang, et al. Experimental study and theoretical calculation on the flexural stiffness of concrete beams reinforced with FRP bars[J]. China Civil Engineering Journal, 2015, 48(11): 44-53.
    [10]
    贾方方. 钢筋与活性粉末混凝土粘结性能的试验研究[D]. 北京:北京交通大学,2013.
    [11]
    徐海宾,邓宗才. UHPC梁开裂弯矩和裂缝试验[J]. 哈尔滨工业大学学报,2014,46(4): 87-92.

    XU Haibin, DENG Zongcai. Cracking moment and crack width of ultra-high performance concrete beams[J]. Journal of Harbin Institute of Technology, 2014, 46(4): 87-92.
    [12]
    YOO D Y, YOON Y S. A review on structural behavior, design, and application of ultra-high-performance fier-reinforced concrete[J]. International Journal of Concrete Structures and Materials, 2016, 10(2): 125-142. doi: 10.1007/s40069-016-0143-x
    [13]
    HASGUL U, TURKER K, BIROL T, et al. Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios[J]. Structural Concrete, 2018, 19(6): 1577-1590. doi: 10.1002/suco.201700089
    [14]
    AHMED K S, HABIB M A, ASEF M F. Flexural response of stainless steel reinforced concrete beam[J]. Structures, 2021, 34: 589-603. doi: 10.1016/j.istruc.2021.08.019
    [15]
    中华人民共和国住房和城乡建设部. 活性粉末混凝土:GB/T 31387—2015 [S]. 北京:中国标准出版社,2015.
    [16]
    中国建筑科学研究院. 混凝土结构试验方法标准:GB/T 50152—2012[S]. 北京:中国建筑工业出版社,2012.
    [17]
    高丹盈,张明,赵军. 疲劳荷载下钢纤维高强混凝土梁裂缝宽度的计算方法[J]. 土木工程学报,2013,46(3): 40-48.

    GAO Danying, ZHANG Ming, ZHAO Jun. Calculating method for crack width of steel fiber reinforced high-strength concrete beams under fatigue loads[J]. China Civil Engineering Journal, 2013, 46(3): 40-48.
    [18]
    宁喜亮,丁一宁. 钢筋钢纤维自密实混凝土梁裂缝宽度试验研究[J]. 工程力学,2017,34(4): 116-124.

    NING Xiliang, DING Yining. Experimental research on crack width of steel fibers reinforced self-consolidating concrete beams[J]. Engineering Mechanics, 2017, 34(4): 116-124.
    [19]
    高丹盈,刘建秀. 钢纤维混凝土基本理论[M]. 北京:科学技术文献出版社,1994.
    [20]
    贾方方,安明喆,余自若,等. 钢筋与活性粉末混凝土黏结性能的梁式试验研究[J]. 铁道学报,2012,34(6): 83-87.

    JIA Fangfang, AN Mingzhe, YU Ziruo, et al. Beam test of bond behavior between steel bars and reactive powder concrete[J]. Journal of the China Railway Society, 2012, 34(6): 83-87.
    [21]
    BABY F, MARCHAND P, ATRACH M, et al. Analysis of flexure-shear behavior of UHPFRC beams based on stress field approach[J]. Engineering Structures, 2013, 56: 194-206. doi: 10.1016/j.engstruct.2013.04.024
    [22]
    徐明雪,梁兴文,汪萍,等. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学,2019,36(8): 70-78.

    XU Mingxue, LIANG Xingwen, WANG Ping, et al. Theoretical investigation on normal section flexural capacity of uhpc beams[J]. Engineering Mechanics, 2019, 36(8): 70-78.
    [23]
    BAE B I, CHOI H K, CHOI C S. Flexural strength evaluation of reinforced concrete members with ultra high performance concrete[J]. Advances in Materials Science and Engineering, 2016, 2016: 2815247.1-2815247.11.
    [24]
    王景全,戚家南,刘加平. 基于细观本构模型的UHPC梁受弯全过程分析[J]. 建筑结构学报,2020,41(9): 137-144.

    WANG Jingquan, QI Jianan, LIU Jiaping. Flexural analysis of UHPC beams based on a mesoscale constitutive model[J]. Journal of Building Structures, 2020, 41(9): 137-144.
    [25]
    周建民,王眺,赵勇,等. 高强钢筋混凝土受弯构件裂缝宽度计算方法的研究[J]. 土木工程学报,2010,43(9): 69-76.

    ZHOU Jianmin, WANG Tiao, ZHAO Yong, et al. Research on the calculation of crack width for RC flexural member using high-strength bars[J]. China Civil Engineering Journal, 2010, 43(9): 69-76.
    [26]
    程东辉,范永萱,王彦松. RC类活性粉末混凝土钢筋粘结-滑移本构模型[J]. 吉林大学学报(工学版),2021,51(4): 1317-1330.

    CHENG Donghui, FAN Yongxuan, WANG Yansong. Bond-slip constitutive model of steel bars and reactive powder concrete under standard curing[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1317-1330.
    [27]
    张哲,李帅帅,朱平,等. 钢筋-超高性能混凝土界面黏结性能试验[J]. 湖南大学学报(自然科学版),2022,49(11): 105-115.

    ZHANG Zhe, LI Shuaishuai, ZHU Ping, et al. Test on interface bonding behavior between steel rebar and ultra-high performance concrete[J]. Journal of Hunan University (Natural Sciences), 2022, 49(11): 105-115.
    [28]
    梁芮,黄远. 高强钢筋与超高性能混凝土黏结性能试验研究[J]. 建筑结构学报,2022,43(9): 294-302.

    LIANG Rui, HUANG Yuan. Experimental study on bond performance between high strength steel rebar and ultra-high performance concrete[J]. Journal of Building Structures, 2022, 43(9): 294-302.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views(205) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return