试件 编号 | 接缝 类型 | 设计侧压 应力/MPa | 实际侧压 应力/MPa | 预估承 载力/kN |
F3-P | 平接缝 | 3 | 3.13 | 86.40 |
F3-G | 干接缝 | 3 | 3.05 | 263.17 |
F3-J | 胶接缝 | 3 | 2.99 | 526.40 |
F6-J | 胶接缝 | 6 | 6.05 | 589.53 |
F9-J | 胶接缝 | 9 | 9.01 | 646.66 |
F12-J | 胶接缝 | 12 | 12.04 | 698.57 |
Citation: | LI Xiaozhen, YANG Dehai, LEI Kangning, XIAO Lin, DAI Shengyong. Seismic Response of Continuous Beam-Arch Bridge under Spatially Varying Ground Motions[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 221-228. doi: 10.3969/j.issn.0258-2724.20190400 |
超高性能混凝土(UHPC)近年来得到了广泛的关注和研究,具有高强、高韧、高耐久性等诸多优点[1-3]. UHPC通常需要高温养护来获得超高性能,从工程应用角度来看,预制装配式结构更适合其发挥特长. UHPC节段装配式桥梁目前已经在工程中得到应用,这种桥梁在纵桥向进行分段,由预应力钢束将各节段连成整体. 由于普通钢筋在接缝处断开,且混凝土不连续,因此,接缝是潜在的抗剪薄弱环节. 键齿接缝是节段装配式桥梁最为广泛采用的连接形式之一,UHPC键齿接缝的抗剪承载力及其设计也因此成为行业关注的重点.
目前,国内外对普通混凝土键齿接缝抗剪性能的研究已较为深入. 在已有抗剪承载力计算方法中,认可度较高的大致有2种:一种是采用数理统计方法进行回归拟合;另一种是基于莫尔应力圆结合破坏准则进行理论推导. 前者如Buyukozturk等[4-5]的研究成果,由大量试验数据拟合得到的计算方法虽然预测精度较好,但理论性稍有欠缺,无法直接反映键齿接缝的受剪机理;后者则以美国德州大学的Roberts等[6]所建立的45° 斜压杆模型为典型代表,该方法已有很多衍生模型,由于力学机制相对明确,得到了众多学者的继承沿用[7-11]. 针对UHPC键齿接缝,刘桐旭[9]通过直剪试验发现,提高侧压力和UHPC抗拉强度或加入钢纤维均可提高键齿干接缝的抗剪承载力. Jiang等[10]通过10个推出试件研究了活性粉末混凝土(RPC)键齿干接缝的抗剪性能及其影响因素,基于莫尔应力圆,提出了RPC键齿干接缝抗剪承载力的简化计算公式. 王景全等[11-12]基于试验和数值模拟,各自提出了UHPC干接缝大键齿的合理深齿比和倾角. 上述研究主要针对干接缝,在胶接缝方面,闫泽宇[13]开展了3组UHPC键齿试件的剪切试验,通过回归分析给出了接缝抗剪承载力的拟合公式. 郑凡等[14]基于11个UHPC键齿胶接缝试件的直剪试验结果,考虑胶层黏结、接缝面摩擦和键齿等的贡献,建立了接缝抗剪承载力计算公式. 然而,由于接缝类型不同,加上UHPC材性差异较大,目前关于UHPC键齿接缝抗剪承载力计算公式引入的参数较多,往往存在特定的适用范围,公式形式较复杂且不统一,距离工程应用还有较大差距.
本文依托某拟建的节段装配式UHPC箱梁桥,针对其键齿接缝的抗剪承载力展开试验和理论研究. 将UHPC材料强度作为影响因素,基于剪压强度准则,推导得到了键齿接缝抗剪承载力计算公式,研究成果可为UHPC键齿接缝抗剪分析与设计提供参考.
某拟建主跨40 m的UHPC节段装配式简支箱梁桥分幅设置,每幅箱宽5.5 m,纵向分为3个节段(12.975 + 14 + 12.975)m,设有2个完全相同的胶接缝,选取其中一个作为试验原型. 根据其结构设计参数,采用足尺模型设计了1个UHPC平接缝试件和5个UHPC单键齿接缝试件,前者用于研究接触面摩阻力,后者包括干接缝和胶接缝2种类型以及4种侧压应力. 在参考已有试验研究的基础上,考虑依托工程的实际侧压力变化范围,选用3、6、9、12 MPa来模拟体外钢束所施加的力,为便于描述,按“侧压应力-接缝类型”来命名试件,如在F3-P、F3-G和F3-J中,F3代表侧压应力为3 MPa;P代表平接缝,G代表干接缝,J代表胶接缝. 试件参数如表1所示.
试件 编号 | 接缝 类型 | 设计侧压 应力/MPa | 实际侧压 应力/MPa | 预估承 载力/kN |
F3-P | 平接缝 | 3 | 3.13 | 86.40 |
F3-G | 干接缝 | 3 | 3.05 | 263.17 |
F3-J | 胶接缝 | 3 | 2.99 | 526.40 |
F6-J | 胶接缝 | 6 | 6.05 | 589.53 |
F9-J | 胶接缝 | 9 | 9.01 | 646.66 |
F12-J | 胶接缝 | 12 | 12.04 | 698.57 |
为防止试验过程中侧压力偏转,键齿接缝试件采用三段式设计,如图1(a)所示. 其中,中段为双向凸齿构造,左、右段均为凹齿构造;中段及左、右段的试验部分厚度均为120 mm;左、右段外侧局部加厚至280 mm,以使键齿结构侧向受力均匀. 试件的齿根宽度为100 mm,齿尖宽度为50 mm,齿深为40 mm;键齿上、下平接面宽度分别为50 mm,胶层厚度为2 mm. 平接缝试件的轮廓尺寸与键齿接缝试件一致,如图1(b)所示.
UHPC材料与依托工程完全一致,采用平直钢纤维,纤维直径为0.2 mm,长13 mm,抗拉强度大于
如图2所示,采用两块厚30 mm的侧压板和4根直径36 mm的高强螺杆为试件施加侧压力,在螺母和承压钢板之间设置压力传感器以测量螺杆的拉力,设计和实际初始侧压应力如表1所示. 采用10 MN伺服压力机进行加载,将试件置于压力机承台上,底部用细砂垫平,顶部放置钢垫板,钢垫板上放置力传感器,试验加载前用水平尺对试件进行调平. 在试件中段底部和左右段对应处布置位移计,以测量接缝面的相对滑移. 将试件表面涂白,并绘制5 cm × 5 cm的网格线,以便观察裂缝发展情况.
采用力加载控制方式,分预加载和正式加载2个阶段,两阶段采用相同的荷载级,并分别记录应变、滑移等相关数据. 试验前采用Vf =μσnAsm对平接缝试件的抗剪承载力进行预估. 其中:Asm为平接面面积;σn为接缝所受的侧压应力;μ为胶接缝的摩擦系数,参考Gopal等[7]的建议近似取0.6. 同时,采用式(1)对键齿接缝试件的抗剪承载力进行预估[7].
V={(−0.009σn+0.59)Asm+Aj√(ft+σn2)2−(σn2)2,干接缝,C(Asm+Ake)+(−0.007σn+0.54)Asm+Aj√(ft+σn2)2−(σn2)2,胶接缝, |
(1) |
式中:Aj为接缝面面积;$ {f_{\text{t}}} $为UHPC的极限抗拉强度,高温养护UHPC的拉压关系可取$ 0.648\sqrt {f_{\text{ck}}} $,$ {f_{\text{ck}}} $为UHPC圆柱体抗压强度,近似取轴心抗压强度$ {f_{\text{c}}} $;C为胶层与UHPC间的黏结力,文献[7]建议C=3.7 MPa;Ake为胶层面积.
采用式(1)对6个试件的抗剪承载力进行预估,如表1所示. 试验时,首先进行预加载以消除装置间的缝隙,荷载大小取试件预估承载力的20%;在正式加载中,试件开裂前的荷载级采用其预估承载力的1/20,加载速度为20~25 kN/min;开裂后的荷载级降为15~20 kN,加载速度降为10 kN/min,以便观察裂缝发展情况. 每级加载后待应变片及位移计读数稳定后再读取相关数据.
5个键齿接缝试件的加载现象类似,在加载初期无明显现象,当接近极限荷载的60%时,试件中段的键齿根部下方出现斜向上的裂缝,与水平方向的夹角约为60°,该裂缝在后续加载中发展较缓;继续加载后,键齿根部出现竖向裂缝,其附近还有多条平行裂缝;当竖向裂缝发展到一定程度后,试件由于钢纤维被拔出而发出“滋滋”声,此时竖向裂缝开始剧烈发展,多条平行小裂缝在剪力作用下逐渐连接成主裂缝,并向上贯穿;当接近极限荷载时,主裂缝从表面贯穿了键齿根部,键齿上、下平接面附近的UHPC产生了明显的错动;当达到极限荷载时,试件中段两侧键齿的根部在短时间内先后剪断,并发出巨大的声响. 试件具有明显的脆性破坏特点,如图3所示.
平接缝试件在加载初期也没有明显现象,当加载至98.92 kN时试件发出“滋滋”声,右侧接缝的胶体出现裂隙,而左侧接缝的胶体仍几乎完好. 继续加载时,接缝处开始出现滑移,但由于加载对中或试件制作等问题,左右两侧接缝处的滑移存在不对称现象. 当加载至207.53 kN时,右侧接缝的胶体与UHPC脱离,部分胶体发生断裂,加载终止,如图4所示.
图5为各试件的荷载-滑移曲线,除了F3-J以外,其余试件的初始刚度都比较接近. 从曲线初始段的发展趋势来看,在对F3-J进行加载时试验装置之间可能仍存在未完全闭合的间隙,导致其初始刚度较小. 此外,由于存在不对称现象,平接缝试件F3-P是以右侧接缝的滑移位移为依据绘制的,脆性破坏特征不是很明显,其开裂和极限荷载均明显低于键齿接缝试件. 5个键齿接缝试件的曲线发展趋势较为接近,当键齿根部出现竖向裂缝后,试件刚度逐渐下降,竖向裂缝逐渐发展为主裂缝;当荷载接近峰值时,主裂缝贯穿整个键齿根部;进入破坏阶段后,个别试件的荷载-滑移曲线存在短暂的平台段,如F3-J;当键齿根部被剪断后,试件滑移陡增,荷载急降,表现出较明显的脆性破坏特征. 对比F3-G和F3-J可以看到,相同侧压应力下胶接缝的抗剪承载力(756.29 kN)比干接缝(623.70 kN)大21.3%,由于接缝面胶体承担的剪力比干接缝摩擦力更大,而且胶接缝试件的整体性比干接缝更好,可更好地发挥UHPC的高强材性.
图6为不同侧压应力下4个键齿胶接缝试件的荷载对比.
由图可见:开裂荷载和极限荷载均随侧压应力的增大而增大. 当侧压应力为6、9、12 MPa时,开裂荷载分别为542.29、678.47、757.00 kN,比3 MPa时分别增大了20.2%、50.4%和67.8%;极限荷载分别为836.75、927.55、960.11 kN,比3 MPa时分别增大了10.6%、22.6%和26.9%;试件的开裂荷载与极限荷载之比与侧压应力近似成线性关系.
由表1和图5可知,式(1)的预估承载力明显偏低,有必要对UHPC键齿接缝的抗剪承载力作进一步的研究. 一般认为,键齿接缝的抗剪承载力主要由接缝面的摩擦力(Vf)和键齿的抗剪力(Vk)组成,且后者占主导作用. 将键齿接缝视为一个倾斜角为α的斜压杆,如图7(a)所示,图中:h为键齿接缝的高度,w为比拟斜压杆的宽度. 采用摩尔应力圆理论求解键齿根部的目标剪应力τ[6-10],最后求得Vk(Vk=τAk,Ak为键齿根部面积).
本文沿用上述假设,但采用八面体应力公式和剪压强度准则来推导τ. 以单键齿接缝为例进行说明(多键齿接缝类似),如图7(b)、(c)所示(σx为水平正应力,σy为竖向正应力),键齿根部的一个微元体处于双向受压应力和剪应力的复合应力状态. 蒋大骅[16-17]通过对比研究发现,复合应力状态与图7(d)所示的单向剪压应力状态在破坏模式上较为接近,均近似满足剪压强度准则,如式(2).
τoctfc=aσoctfc+b, |
(2) |
式中:a、b为系数,可分别取a=−1.15,b=0.087[16];τoct和σoct分别为八面体应力,如式(3)、(4).
σoct=13(σ1+σ2+σ2), |
(3) |
τoct=13√(σ1−σ2)2+(σ2−σ3)2+(σ3−σ1)2, |
(4) |
式中:σ1、σ2、σ3分别为第一、第二、第三主应力,在如图7(c)平面应力状态下σ2=0,σ1、σ3如式(5)、(6).
σ1=12(σx+σy)+12√(σx−σy)2+4τ2xy, |
(5) |
σ3=12(σx+σy)−12√(σx−σy)2+4τ2xy, |
(6) |
式中:τxy即为键齿根部的剪应力.
将式(5)、(6)代入式(3)、(4)可得
σoct=13(σx+σy), |
(7) |
τoct=13√2(σ2x+σ2y−σxσy+3τ2xy). |
(8) |
由图7(a)可知:水平正应力σx=−σn;Roberts等[6]基于试验结果根据比拟斜压杆模型建议σy=−τ,这一结论后来被大量学者引用[9-10,18],也被美国AASHTO(美国国家公路与运输协会)规范[19]所采纳,本文因此沿用这一结论.
将式(7)、(8)代入式(2),考虑到σx=−σn和σy=−τ,可得
−a(σn+τ)+3bfc=√(σn−τ)2+σ2n+7τ2. |
(9) |
求解式(9)并舍去较小解可得
τ=[σn(a2+1)−3abfc+√4a2σ2n−18abfcσn+24b2f2c−5σ2n]8−a2. |
(10) |
将a=−1.15,b=0.087[16]代入式(10)可得
τ=0.045fc+0.348σn+0.11√(fc+4.955σn)2−22.956σ2n. |
(11) |
统计[4,7-10,13-14,18]发现,键齿接缝的侧压应力σn大都低于$ 0.1{f_{\text{c}}} $,因此,式(11)中22.956$ \sigma _{\text{n}}^2 $仅约为$ {\left( {{f_{\text{c}}} + 4.955{\sigma _{\text{n}}}} \right)^2} $的10%. 若将22.956$ \sigma _{\text{n}}^2 $舍去,式(11)就可转变为
τ=0.155fc+0.9σn. |
(12) |
由此得到UHPC键齿接缝抗剪承载力为
Va=Vk+Vf=(0.155fc+0.9σn)Ak+μσnAsm. |
(13) |
对于干接缝试件的摩擦系数,美国混凝土协会[20](ACI)建议,当约束应力比(即$ \sigma_{{\mathrm{n}}} / f_{{\mathrm{c}}} $)小于0.1时,摩擦系数为0.60;刘桐旭[9]根据试验结果,以约束应力比为参数给出了μ的拟合公式,其值也集中在0.60附近;Gopal等[7]也提出了类似的经验公式,取值也以0.60为基准,因此本文沿用0.60. 胶接缝试件的摩擦系数μ在取值上仍有争议,Gopal等[7]建议的取值与干接缝接近,但由表1可知,其理论计算值仅为F3-P实测值的41.63%,明显偏小. 根据F3-P试件的实测结果来反算,可得摩擦系数μ约为1.38. 该数值与美国AASHTO规范[19]针对整体浇筑混凝土所建议的摩擦系数1.40非常接近. 鉴于4个胶接缝试件在破坏时表现出良好的整体性,本文采用1.40作为其平接面摩擦系数,但该数值仍有待进一步验证. 式(13)对多键齿接缝也是适用的,只是Ak和Asm要相应地变化.
为便于表述,定义比值系数λ=Vc/Vt,其中Vc、Vt分别为计算值和实测值,λ越接近1说明计算值越接近实测值,λ>1说明计算值高估了承载力,λ<1说明计算值较为保守. 同时定义$ \overline \lambda $、λcov和Sλ分别为比值系数的均值、变异系数和平均绝对误差,$ \overline \lambda $可反映计算方法总体上是否保守,$ \overline \lambda $>1表示计算方法总体偏大,$ \overline \lambda $<1表示计算方法总体偏保守;λcov越小表示计算方法的离散程度越低;$ {S_{\text{λ}} } $反映计算方法的精度,Sλ越小表示计算方法精度越高.
由表2和图8可见,采用式(13) 计算后,5个键齿试件的计算误差分别为5%、−6%、5%、13%和26%,平均绝对误差为11%,表明式(13)可较为准确地预测本文5个UHPC键齿接缝的抗剪承载力,但计算值整体偏大. 5个试件比值系数的变异系数λcov=0.10,表明式(13)的计算离散性较低,计算效果较理想.
试件编号 | Vt/kN | Vc/kN | λ | $ \overline \lambda $ | Sλ | λcov |
F3-G | 623.7 | 657.1 | 1.05 | 1.09 | 0.11 | 0.10 |
F3-J | 756.3 | 714.7 | 0.94 | |||
F6-J | 836.8 | 880.3 | 1.05 | |||
F9-J | 927.6 | 1.13 | ||||
F12-J | 960.1 | 1.26 |
由于本文试件数量有限,本节结合已有试验数据对式(13)作进一步对比分析. 从文献[7,9-10,13-14,18]中统计了62个UHPC键齿接缝的剪切试验结果,接缝形式有干接缝和胶接缝,侧压应力的范围为1~24 MPa,约束应力比的范围为0.82%~22.57%,键齿数量有单键齿和多键齿. 试件破坏形式均与本文试验类似的键齿剪断破坏.
图9为采用式(13)计算得到的理论值与实测值的对比:62个试件中有7个试件的计算误差在−30%以外,占比11.3%;有22个试件的计算误差为−30%~−10%,占比35.5%;有16个试件的计算误差在−10%~10%,占比25.8%;有9个试件的计算误差为10%~30%,占比14.5%;有8个试件的计算误差在30%以外,占比12.9%. 62个试件的比值系数均值$ \overline{\lambda} $=0.99,其中58%的计算值低于实测值,表明式(13)总体稍偏保守;有超过75%的计算绝对误差低于30%,平均绝对误差Sλ=0.21,表明式(13)总体精度较高. 比值系数的变异系数λcov=0.26,但超过60%的数据点集中分布在−30%~10%误差线内,表明式(13)的计算结果有一定离散性,但总体较为稳定.
将62个试件根据键齿数量、接缝形式、约束应力比等影响参数进行分类,分析结果如表3.
影响参数 | 试件数量/个 | $ \overline \lambda $ | Sλ | λcov | |
键齿数量 | 单键齿 | 35 | 0.92 | 0.20 | 0.25 |
多键齿 | 27 | 1.08 | 0.21 | 0.25 | |
接缝形式 | 干接缝 | 38 | 0.96 | 0.18 | 0.22 |
胶接缝 | 24 | 1.03 | 0.25 | 0.31 | |
约束应力比 | ≤1% | 9 | 0.93 | 0.15 | 0.16 |
(1%,2%] | 13 | 0.89 | 0.24 | 0.27 | |
(2%,5%] | 16 | 0.87 | 0.17 | 0.20 | |
(5%,10%] | 15 | 1.09 | 0.19 | 0.21 | |
>10% | 10 | 1.22 | 0.29 | 0.25 |
1) 35个单键齿试件的$ \overline{\lambda} $=0.92,27个多键齿试件的$ \overline{\lambda} $=1.08,说明式(13)对单键齿试件抗剪承载力的预测偏低,但高估了多键齿试件的抗剪承载力,可能是推导过程未充分考虑多键齿间的耦合作用对抗剪承载力的削弱. 单键齿和多键齿试件的λcov均约为0.25,Sλ分别为0.20和0.21,表明式(13)对不同键齿数量的试件具有相似的计算精度和离散程度.
2) 38个干接缝试件的$ \overline \lambda $=0.96,24个胶接缝试件的$ \overline \lambda $=1.03,说明式(13)对胶接缝试件抗剪承载力的预测稍偏大,对干接缝试件的预测则偏保守,可能是高估了胶接缝试件的摩擦系数. 干接缝试件的Sλ=0.18,明显优于胶接缝试件的0.25,变异系数也明显更小,表明式(13)计算干接缝的效果在精度和离散程度方面均优于胶接缝.
3) 当约束应力比小于5%时,式(13)偏保守,且误差和离散程度都不大;当$ {{{\sigma _{\text{n}}}} \mathord{\left/ {\vphantom {{{\sigma _{\text{n}}}} {{f_{\text{c}}}}}} \right. } {{f_{\text{c}}}}} $处于5%~10%时,计算结果少量偏大,但误差和离散程度均较小;当$ {{{\sigma _{\text{n}}}} \mathord{\left/ {\vphantom {{{\sigma _{\text{n}}}} {{f_{\text{c}}}}}} \right. } {{f_{\text{c}}}}} $超过10%时,计算值偏大较多,且精度和离散程度均较差,其原因是推导过程舍去了相对较小项(−22.956$ \sigma _{\text{n}}^2 $),客观上放大了计算值. 当约束应力比较小时,舍去较小项对计算结果影响很小;当约束应力比较大时,该数值在结果中的占比有所提升,使计算结果偏大,且偏离程度会随着约束应力比的上升而变大.
1) UHPC键齿接缝试件在破坏时主裂缝沿竖向贯穿整个键齿根部,具有明显的脆性破坏特征. 胶接缝比干接缝具有更好的整体性,更适合UHPC材性的发挥.
2) 在相同侧压应力下,胶接缝试件的极限荷载比干接缝大21.3%;当侧压应力由3 MPa分别增至6、9、12 MPa时,胶接缝试件的极限荷载分别增大10.6%、22.6%、26.9%.
3) 基于剪压强度准则,采用八面体应力公式推导得到的计算公式可较为准确地预测UHPC键齿接缝的抗剪承载力,5个键齿接缝试件的$ \overline \lambda $=1.09, Sλ=0.11,λcov=0.10,表明计算公式的精度较高、离散性较低.
4) 62个已有试件的计算结果表明,本文公式的总体比值系数均值为0.99,平均绝对误差为0.21,具有较好的预测精度和稳定性,且58%的计算值低于实测值,计算结果稍偏保守.
5) 本文公式对单键齿和干接缝试件抗剪承载力的预测偏低,对多键齿和胶接缝试件抗剪承载力的预测偏高. 约束应力比对本文公式的预测精度有一定的影响,当$ {{{\sigma _{\text{n}}}} \mathord{\left/ {\vphantom {{{\sigma _{\text{n}}}} {{f_{\text{c}}}}}} \right. } {{f_{\text{c}}}}} > 10{\text{%}} $时,计算效果相对较差.
致谢:感谢重庆交通大学研究生科研创新项目(2022S0004)对本研究工作的资助.
夏修身. 铁路连续梁拱组合桥基于摩擦摆支座的减隔震研究[J]. 西北地震学报,2012,34(4): 350-354.
XIA Xiushen. Seismic isolation of combined system of continuous girder-arch railway bridge using friction pendulum bearing[J]. Northwestern Seismological Journal, 2012, 34(4): 350-354.
|
ZANARDO G, HAO H, MODENA C. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(6): 1325-1345.
|
李晰,何澜,李倩,等. 脉冲型地震动对CFST拱桥抗震性能的影响分析[J]. 西南交通大学学报,2019,54(4): 731-740. doi: 10.3969/j.issn.0258-2724.2014.05.001
LI Xi, HE Lan, LI Qian, et al. Effect of pule-like ground motion on seismic performance of concrete-filled steel tubular arch bridge[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 731-740. doi: 10.3969/j.issn.0258-2724.2014.05.001
|
王立宪,刘屺阳,狄生奎,等. 非一致激励下钢管混凝土拱桥平稳随机地震响应分析[J]. 兰州理工大学学报,2016,42(2): 124-129. doi: 10.3969/j.issn.1673-5196.2016.02.025
WANG Lixian, LIU Qiyang, DI Shengkui, et al. Analysis of stationary random seismic response of arch bridge with concrete-filled steel tubes under non-uniform excitation[J]. Journal of Lanzhou University of Technology, 2016, 42(2): 124-129. doi: 10.3969/j.issn.1673-5196.2016.02.025
|
LI B, CHOUW N. Experimental investigation of inelastic bridge response under spatially varying excitations with pounding[J]. Engineering Structures, 2014, 79: 106-116. doi: 10.1016/j.engstruct.2014.08.012
|
BI K, HAO H, REN W X. Seismic response of a concrete filled steel tubular arch bridge to spatially varying ground motions including local site effect[J]. Advances in Structural Engineering, 2013, 16(10): 1799-1817. doi: 10.1260/1369-4332.16.10.1799
|
马凯,钟剑,袁万城,等. 非一致地震激励下飘浮体系斜拉桥易损性分析[J]. 同济大学学报 (自然科学版),2017,45(12): 1744-1754.
MA Kai, ZHONG Jian, YUAN Wancheng, et al. Fragility analysis of floating cable-stayed bridge under non-uniform seismic excitation[J]. Journal of Tongji University (Natural Science), 2017, 45(12): 1744-1754.
|
HAN L H, YAO G H, ZHAO X L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)[J]. Journal of Constructional Steel Research, 2005, 61(9): 1241-1269. doi: 10.1016/j.jcsr.2005.01.004
|
SCOTT B D, PARK R, PRIESTLEY M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain ratio Rates[D]. Lulea: Lulea University of Technology, 1989.
|
MENEGOTTO M. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]//Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Lisbon: IABSE, 1973: 15-22.
|
JOYNER W B, BOORE D M. Measurement,characterization,and prediction of strong ground motion[J]. Geotechnical Special Publication, 1988, 6(6): 43-102.
|
贾宏宇,蓝先林,陈航,等. 基于相位差谱的非平稳地震波合成及应用[J]. 西南交通大学学报,2019,54(3): 453-460.
JIA Hongyu, LAN Xianlin, CHEN Hang, et al. Synthesis of non-stationary seismic waves based on phase difference spectrum and its application[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 453-460.
|
BI K, HAO H. Modelling and simulation of spatially varying earthquake ground motions at sites with varying conditions[J]. Probabilistic Engineering Mechanics, 2012, 29: 92-104. doi: 10.1016/j.probengmech.2011.09.002
|
HAO H, OLIVEIRA C S, PENZIEN J. Multiple-station ground motion processing and simulation based on SMART-1 array data[J]. Nuclear Engineering and Design, 1989, 111(3): 293-310. doi: 10.1016/0029-5493(89)90241-0
|
ZHAO L, HAO H, BI K, et al. Numerical study of the seismic responses of precast segmental column bridge under spatially varying ground motions[J]. Journal of Bridge Engineering, 2018, 23(12): 04018096.1-04018096.18.
|
1. | 魏星,甘肃. 多跨径连续梁拱组合体系桥梁的抗震分析. 工程建设与设计. 2024(07): 106-108 . ![]() | |
2. | 邵长江,崔皓蒙,漆启明,韦旺,庄卫林,黄辉,袁得铮. 近远场地震下RC大跨轻柔拱桥减隔震支座方案优化. 西南交通大学学报. 2024(03): 615-626 . ![]() | |
3. | 冯佳. 深切峡谷上承式钢管混凝土拱桥地震响应分析. 公路交通技术. 2024(03): 62-67 . ![]() | |
4. | 周乐祥,杨青顺,卫骏,陈飞. 多点激励高烈度区框架结构地震响应分析. 青海大学学报. 2023(01): 57-64 . ![]() | |
5. | 康厚军,邓力铭,丛云跃. 多跨下承式拱桥面内全局动力学理论与自由振动研究. 动力学与控制学报. 2023(04): 59-66 . ![]() | |
6. | 高忠虎,吴忠铁,狄生奎,吴云,王晓琴. 考虑行波效应下钢管混凝土系杆拱桥隔震研究. 中外公路. 2023(05): 84-90 . ![]() | |
7. | 黄永东,罗天,肖华杰. 副拱对连续刚架拱桥的纵向地震响应影响研究. 西部交通科技. 2021(01): 151-154 . ![]() | |
8. | 廖令军,唐瑞. 基于地震空间变异性效应的大跨度桥梁抗震体系研究. 工程技术研究. 2021(07): 33-34+37 . ![]() |
试件 编号 | 接缝 类型 | 设计侧压 应力/MPa | 实际侧压 应力/MPa | 预估承 载力/kN |
F3-P | 平接缝 | 3 | 3.13 | 86.40 |
F3-G | 干接缝 | 3 | 3.05 | 263.17 |
F3-J | 胶接缝 | 3 | 2.99 | 526.40 |
F6-J | 胶接缝 | 6 | 6.05 | 589.53 |
F9-J | 胶接缝 | 9 | 9.01 | 646.66 |
F12-J | 胶接缝 | 12 | 12.04 | 698.57 |
试件编号 | Vt/kN | Vc/kN | λ | $ \overline \lambda $ | Sλ | λcov |
F3-G | 623.7 | 657.1 | 1.05 | 1.09 | 0.11 | 0.10 |
F3-J | 756.3 | 714.7 | 0.94 | |||
F6-J | 836.8 | 880.3 | 1.05 | |||
F9-J | 927.6 | 1.13 | ||||
F12-J | 960.1 | 1.26 |
影响参数 | 试件数量/个 | $ \overline \lambda $ | Sλ | λcov | |
键齿数量 | 单键齿 | 35 | 0.92 | 0.20 | 0.25 |
多键齿 | 27 | 1.08 | 0.21 | 0.25 | |
接缝形式 | 干接缝 | 38 | 0.96 | 0.18 | 0.22 |
胶接缝 | 24 | 1.03 | 0.25 | 0.31 | |
约束应力比 | ≤1% | 9 | 0.93 | 0.15 | 0.16 |
(1%,2%] | 13 | 0.89 | 0.24 | 0.27 | |
(2%,5%] | 16 | 0.87 | 0.17 | 0.20 | |
(5%,10%] | 15 | 1.09 | 0.19 | 0.21 | |
>10% | 10 | 1.22 | 0.29 | 0.25 |
试件 编号 | 接缝 类型 | 设计侧压 应力/MPa | 实际侧压 应力/MPa | 预估承 载力/kN |
F3-P | 平接缝 | 3 | 3.13 | 86.40 |
F3-G | 干接缝 | 3 | 3.05 | 263.17 |
F3-J | 胶接缝 | 3 | 2.99 | 526.40 |
F6-J | 胶接缝 | 6 | 6.05 | 589.53 |
F9-J | 胶接缝 | 9 | 9.01 | 646.66 |
F12-J | 胶接缝 | 12 | 12.04 | 698.57 |
试件编号 | Vt/kN | Vc/kN | λ | $ \overline \lambda $ | Sλ | λcov |
F3-G | 623.7 | 657.1 | 1.05 | 1.09 | 0.11 | 0.10 |
F3-J | 756.3 | 714.7 | 0.94 | |||
F6-J | 836.8 | 880.3 | 1.05 | |||
F9-J | 927.6 | 1.13 | ||||
F12-J | 960.1 | 1.26 |
影响参数 | 试件数量/个 | $ \overline \lambda $ | Sλ | λcov | |
键齿数量 | 单键齿 | 35 | 0.92 | 0.20 | 0.25 |
多键齿 | 27 | 1.08 | 0.21 | 0.25 | |
接缝形式 | 干接缝 | 38 | 0.96 | 0.18 | 0.22 |
胶接缝 | 24 | 1.03 | 0.25 | 0.31 | |
约束应力比 | ≤1% | 9 | 0.93 | 0.15 | 0.16 |
(1%,2%] | 13 | 0.89 | 0.24 | 0.27 | |
(2%,5%] | 16 | 0.87 | 0.17 | 0.20 | |
(5%,10%] | 15 | 1.09 | 0.19 | 0.21 | |
>10% | 10 | 1.22 | 0.29 | 0.25 |