• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SHI Chunlin, YANG Peizhang, ZHANG Chao, DU Lan, YE Kai, FAN Chengxiao, LI Jian, ZU Anran. Segmentation of Small-Field-of-Viewstar Images Based on Kittler Minimum Error Algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 168-175. doi: 10.3969/j.issn.0258-2724.20190841
Citation: XU Jin, CHEN Qin, CHEN Zhengwei, ZHANG Gaofeng, YUAN Quan, CHEN Jian. Review of Roadway Facility Design for Self-Driving Cars[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1366-1377. doi: 10.3969/j.issn.0258-2724.20220007

Review of Roadway Facility Design for Self-Driving Cars

doi: 10.3969/j.issn.0258-2724.20220007
  • Received Date: 03 Jan 2022
  • Rev Recd Date: 18 Apr 2022
  • Available Online: 21 Oct 2023
  • Publish Date: 23 May 2022
  • With the continuous breakthrough and development of intelligent connected vehicle technologies, highly automated self-driving cars have gradually matured and entered public life. Different from manual driving cars, self-driving cars integrate the functions of environmental perception, independent decision-making, as well as control and execution. As a result, it can complete the self-driving for typical or all roadway conditions. The improvement and adjustment in roadway facilities will help to speed up the arrival of the self-driving era. Therefore, it is necessary to clarify the demand and impact of self-driving cars on the design of roadway facilities. Firstly, how the roadway facilities adapt to the driving behavior of self-driving cars was analyzed from five aspects such as horizontal and vertical alignment, cross-section design, traffic signs and markings, parking facilities, and digital roadway facilities. Secondly, the status and development trends of smart roadside facilities and self-driving exclusive lanes were summed up. Then, the research methods of roadway facilities for self-driving cars in China and abroad were summarized, including virtual simulation tests and field driving tests, and the experimental roadways constructed for field driving tests around the world were reviewed. Finally, the focus of and the limitations of existing research were summarized, and the challenges and future development trends of this research field were prospected. The planning and design of existing roadway facilities do not foresee the arrival of self-driving cars; before the widespread popularization of self-driving, manual driving and self-driving cars will coexist for a long time. Therefore, roadway facilities should be designed according to the development stage and future trends of self-driving. This work provides a theoretical basis for roadway facility design adapted to self-driving cars.

     

  • [1]
    KHOURY J, AMINE K, ABI SAAD R. An initial investigation of the effects of a fully automated vehicle fleet on geometric design[J]. Journal of Advanced Transportation, 2019, 1208: 1-10.
    [2]
    OTHMAN K. Impact of autonomous vehicles on the physical infrastructure: changes and challenges[J]. Designs, 2021, 5(3): 1-30.
    [3]
    SEN S, ROESLER J R. Human-centered geometric design of roads using an autonomous vehicle problem[C]//Middle Atlantic ASEE Section Spring 2021 Conference. New York: ASEE, 2021: 1-19.
    [4]
    MACHIANI S G, JAHANGIRI A, MELENDEZ B, et al. Safety Impact evaluation of a narrow-automated vehicle-exclusive reversible lane on an existing smart freeway[R]. Washington D. C.: San Diego State University, 2021.
    [5]
    GOPALAKRISHNA D, CARLSON P J, SWEATMAN P, et al. Impacts of automated vehicles on highway infrastructure[R]. Washington D. C.: Federal Highway Administration, 2021.
    [6]
    CHEN F, BALIEU R, KRINGOS N. Potential influences on long-term service performance of road infrastructure by automated vehicles[J]. Transportation Research Record: Journal of the Transportation Research Board, 2016, 2550(1): 72-79. doi: 10.3141/2550-10
    [7]
    LI B B, SONG D Z, LI H F, et al. Lane marking quality assessment for autonomous driving[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Spain: IEEE, 2019: 1-9.
    [8]
    杨晓寒,暴连胜,顾思思. 高速公路车路协同自动驾驶条件及技术研究[J]. 公路交通科技(应用技术版),2019,15(2): 262-266.
    [9]
    何永明. 超高速公路安全保障与经济评价研究[D]. 哈尔滨: 东北林业大学, 2017.
    [10]
    印顺超. 车联网环境下完全自动驾驶高速公路几何设计标准研究[D]. 西安: 长安大学, 2021.
    [11]
    李智,孔翎旭,王刚,等. 采用平均应力坡度评价沥青路面的抗滑衰变特性[J]. 公路工程,2018,43(5): 33-36,41. doi: 10.3969/j.issn.1674-0610.2018.05.007

    LI Zhi, KONG Lingxu, WANG Gang, et al. Evaluation of anti-sliding attenuation of asphalt pavement by average value of slope[J]. Highway Engineering, 2018, 43(5): 33-36,41. doi: 10.3969/j.issn.1674-0610.2018.05.007
    [12]
    SHI W J, ALAWIEH M B, LI X, et al. Algorithm and hardware implementation for visual perception system in autonomous vehicle: a survey[J]. Integration, 2017, 59: 148-156.
    [13]
    黄晓明,蒋永茂,郑彬双,等. 基于路表摩擦特性的无人驾驶车辆安全制动原理与方法[J]. 科学通报,2020,65(30): 3328-3340. doi: 10.1360/TB-2020-0029

    HUANG Xiaoming, JIANG Yongmao, ZHENG Binshuang, et al. Principle and method of safe braking of unmanned vehicles based on the friction characteristics of road surface[J]. Chinese Science Bulletin, 2020, 65(30): 3328-3340. doi: 10.1360/TB-2020-0029
    [14]
    FERREIRA M, DAMAS L, CONCEICÃO H, et al. Self-automated parking lots for autonomous vehicles based on vehicular ad hoc networking[C]//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn: IEEE, 2014: 472-479.
    [15]
    NOURINEJAD M, BAHRAMI S, ROORDA M J. Designing parking facilities for autonomous vehicles[J]. Transportation Research Part B: Methodological, 2018, 109: 110-127. doi: 10.1016/j.trb.2017.12.017
    [16]
    ZHANG W W, GUHATHAKURTA S. Parking spaces in the age of shared autonomous vehicles: how much parking will we need and where?[J]. Transportation Research Record: Journal of the Transportation Research Board, 2017, 2651(1): 80-91. doi: 10.3141/2651-09
    [17]
    GRIGORESCU S, TRASNEA B, COCIAS T, et al. A survey of deep learning techniques for autonomous driving[J]. Journal of Field Robotics, 2020, 37(3): 362-386. doi: 10.1002/rob.21918
    [18]
    YANG B S, DONG Z, LIU Y, et al. Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 180-194. doi: 10.1016/j.isprsjprs.2017.02.014
    [19]
    王秋红,李艳芬,周炎. 面向车路协同路侧设备运维管理平台研究[J]. 电子技术应用,2020,46(12): 36-38. doi: 10.16157/j.issn.0258-7998.201120

    WANG Qiuhong, LI Yanfen, ZHOU Yan. Research on the operation and maintenance management platform of vehicle-to-road coordination road-side equipment[J]. Application of Electronic Technique, 2020, 46(12): 36-38. doi: 10.16157/j.issn.0258-7998.201120
    [20]
    中国道路交通安全协会. 车联网路侧设施设置指南: T/CTS 1—2020[S]. 北京: 中国标准出版社, 2020 .
    [21]
    周兰孙,郑豆豆. 基于高速公路ETC门架收费设施的车路协同系统探讨[J]. 中国交通信息化,2020(11): 99-101. doi: 10.13439/j.cnki.itsc.2020.11.008
    [22]
    朱涵. 车联网路侧单元部署算法研究[D]. 大连: 大连理工大学, 2016.
    [23]
    吴湧. 车联网路侧单元部署问题的研究[D]. 桂林: 广西师范大学, 2018.
    [24]
    李志龙. 车联网中路侧单元部署策略研究[D]. 上海: 上海交通大学, 2019.
    [25]
    王健. 面向车路协同的路侧节点部署与异构网络切换方法[D]. 西安: 长安大学, 2015.
    [26]
    FOGUE M, SANGUESA J A, MARTINEZ F J, et al. Improving roadside unit deployment in vehicular networks by exploiting genetic algorithms[J]. Applied Sciences, 2018, 8(1): 86-107. doi: 10.3390/app8010086
    [27]
    MASSOBRIO R, TOUTOUH J, NESMACHNOW S. Multi-objective evolutionary algorithms for smart placement of roadside units in vehicular networks[M]. Florida: Chapman & Hall (CRC Press), 2017.
    [28]
    GUERNA A, BITAM S. GICA: an evolutionary strategy for roadside units deployment in vehicular networks[C]//2019 International Conference on Networking and Advanced Systems (ICNAS). Annaba: IEEE, 2019: 1-6.
    [29]
    SAEED T U. Road infrastructure readiness for autonomous vehicles[D]. West Lafayette: Purdue University , 2019.
    [30]
    RAD S R, FARAH H, TAALE H, et al. Design and operation of dedicated lanes for connected and automated vehicles on motorways: a conceptual framework and research agenda[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102664.1-102664.18.
    [31]
    OAKES ASH L, TRICKER J, DAWN A, et al. Roads for the future dedicated driverless spaces-city[R]. London: City Science, 2018.
    [32]
    LIU Z C, SONG Z Q. Strategic planning of dedicated autonomous vehicle lanes and autonomous vehicle/toll lanes in transportation networks[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 381-403. doi: 10.1016/j.trc.2019.07.022
    [33]
    CHEN Z B, HE F, ZHANG L H, et al. Optimal deployment of autonomous vehicle lanes with endogenous market penetration[J]. Transportation Research Part C: Emerging Technologies, 2016, 72: 143-156. doi: 10.1016/j.trc.2016.09.013
    [34]
    LIU Y Y, TIGHT M, SUN Q X, et al. A systematic review: road infrastructure requirement for connected and autonomous vehicles (CAVs)[J]. Journal of Physics: Conference Series, 2019, 1187(4): 042073.1-042073.14.
    [35]
    UZAIR M. Who is liable when a driverless car crashes?[J]. World Electric Vehicle Journal, 2021, 12(2): 62-88. doi: 10.3390/wevj12020062
    [36]
    LIU H, KAN X D, SHLADOVER S E, et al. Modeling impacts of cooperative adaptive cruise control on mixed traffic flow in multi-lane freeway facilities[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 261-279. doi: 10.1016/j.trc.2018.07.027
    [37]
    National Automated Highway System Consortium. Downselect system configurations and workshop[R]. Washington D. C.: National Automated Highway System Consortium, 1997.
    [38]
    王贺鹏,李志斌,王立. 自动驾驶仿真的虚拟交通信号系统分析及实现[J]. 汽车实用技术,2020(7): 34-37. doi: 10.16638/j.cnki.1671-7988.2020.07.011

    WANG Hepeng, LI Zhibin, WANG Li. Analysis and implementation of virtual traffic signal system for autopilot simulation[J]. Automobile Technology, 2020(7): 34-37. doi: 10.16638/j.cnki.1671-7988.2020.07.011
    [39]
    王白凡,刘小洁,杜鹏. 基于VISSIM的自动驾驶车队的行程时间可靠度研究[J]. 交通世界,2020(28): 6-9. doi: 10.3969/j.issn.1006-8872(s).2020.10.003
    [40]
    宋振伟. 基于FPGA 的车辆自动驾驶系统的研究与仿真设计[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [41]
    林泓熠,魏政君,钟宇婷,等. 基于Autoware的无人驾驶小车平台设计与实验仿真[J]. 机电工程技术,2021,50(6): 130-133,172.

    LIN Hongyi, WEI Zhengjun, ZHONG Yuting, et al. Platform design and experimental simulation of autonomous vehicle based on Autoware[J]. Mechanical & Electrical Engineering Technology, 2021, 50(6): 130-133,172.
    [42]
    王楠,刘卫国,张君媛,等. 汽车ACC系统纵向控制六模式切换策略仿真研究[J]. 交通信息与安全,2014,32(4): 143-148. doi: 10.3963/j.issn.1674-4861.2014.04.026

    WANG Nan, LIU Weiguo, ZHANG Junyuan, et al. Simulation test of a new six-mode switching controller for enhanced adapt cruise control[J]. Journal of Transport Information and Safety, 2014, 32(4): 143-148. doi: 10.3963/j.issn.1674-4861.2014.04.026
  • Relative Articles

    [1]YANG Chun, WU Hongwei, MO Tingwei, CAI Jian, WU Yi, ZUO Zhiliang, CHEN Qingjun, PAN Guangbin. Shaking Table Test for Structural Model with Inclined Column Transfer System[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 517-525. doi: 10.3969/j.issn.0258-2724.20190104
    [2]LI Bingtian, QIU Wenge, QI Xingxin, DENG Zhiheng, HU Hui. Shaking Table Tests on Seismic Response of Tunnel with Longitudinal Cracking Lining[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 20-27, 55. doi: 10.3969/j.issn.0258-2724.20190657
    [3]GENG Ping, WANG Qi, GUO Xiangyu, HE Chuan, LU Shujun, XIAO Mingqing. Force Characteristics of Longitudinal Joints of Shield Tunnel under Seismic Action[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 704-712. doi: 10.3969/j.issn.0258-2724.20180634
    [4]LI Xiaozhen, LIU Ming, YANG Dehai, DAI Shengyong, XIAO Lin. Seismic Damage Evolution Simulation of Long-Span Deck Steel Truss Arch Bridge[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1207-1214, 1223. doi: 10.3969/j.issn.0258-2724.20180665
    [5]XIE Hongming, HE Chuan, FENG Kun, LIANG Minfei, LI Ce, AL-SEBAEAI Maged. Unidirectional Vibration Waterproof Test of Ring Joint of Shield Tunnel under the Action of Earthquake[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 713-718. doi: 10.3969/j.issn.0258-2724.20180456
    [6]CUI Jie, LU Yaobo, QÜ Jianxin, LI Yadong. Influencing Factors Analysis of Seismic Responses of Water Immersed Tunnel[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1224-1230. doi: 10.3969/j.issn.0258-2724.20180875
    [7]YAN Qixiang, LI Binjia, CHEN Hang, ZHANG Weilie, DENG Zhixin. Failure and Parametric Analysis of Shield Tunnel Bolts under Impact Load[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 23-31, 38. doi: 10.3969/j.issn.0258-2724.20160637
    [8]CAO Licong, ZHOU Yuzhe, MA Donghua, LIU Feicheng, ZHANG Jianjing. Large Shaking Table Test on Seismic Response of Site with Tilted Interlayer[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 953-961. doi: 10.3969/j.issn.0258-2724.20170748
    [9]MEI Zhen, GUO Zixiong, HOU Wei, LI Haifeng, WANG Haifeng. Shaking Table Test of Model Structure with Viscous Dampers Subjected to Random Earthquake Ground Motions[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 989-999. doi: 10.3969/j.issn.0258-2724.2018.05.016
    [10]CHENG Xinjun, JING Liping, CUI Jie, LI Yongqiang, DONG Rui. Research of Shaking Table Model Tests on Immersed Tunnels under Different Conditions[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1113-1120. doi: 10.3969/j.issn.0258-2724.2017.06.011
    [11]LEI Hujun, LI Xiaozhen. Effects of Structural Quasi-static Components on Seismic Responses of Train-Track-Bridge System[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 124-130,136. doi: 10.3969/j.issn.0258-2724.2015.01.018
    [12]YANG Qinghua, YAO Lingkan, YANG Ming. Particle Flow Numerical Simulation of Landslip of Loose Slope under Seismic Loading[J]. Journal of Southwest Jiaotong University, 2009, 22(4): 580-584.
    [13]CAO Jixing, CHEN Qiu, ZHANG Jiping. Simulation of SHPB Test on Concrete and Uniformity of Stresses[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 67-70.
    [14]WANG Bo, ZHANG Hailong, XU Feng. Seismic Time-History Response Analysis of Cable-Stayed Bridge with Local Cable Vibration[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 441-446.
    [15]ZHAO Canhui, ZHOU Zhixiang. Fast Algorithm for Stationary Stochastic Response Subjected to Multi-component Multi-support Seismic Excitation[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 55-60.
    [16]GENG Ping, HE Chuan, YAN Qixiang. Analysis of Longitudinal Seismic Response of Shield Tunnel[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 283-287.
    [17]ZHAO Can-hui, ZHOUZhi-xiang. Stationary Stochastic Response ofCFST Arch Bridge to Multi-component Seism ic Excitation[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 200-204.
    [18]ZENG Dong-yang, HE Chuan. Numerical Simulation of Segment Joint Bending Stiffness of Metro Shield Tunnel[J]. Journal of Southwest Jiaotong University, 2004, 17(6): 744-748.
    [19]HUO Hong-fa, YU Qin, HUANG Xie-qing. Numerical Simulation of Dynamical Responses of Assembled Vessel to Explosion Impact Load[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 513-516.
  • Cited by

    Periodical cited type(8)

    1. 陈峻博,王天强,耿萍,孟庆余,霍飞,王旭. 蠕滑-强震叠加作用下跨断层隧道动力响应分析研究. 铁道标准设计. 2025(01): 129-138 .
    2. 王浩鱇,申玉生,潘笑海,常铭宇,张昕阳,粟威. 强震区穿越多破裂面破碎带隧道动力特性试验研究. 现代隧道技术. 2025(01): 212-220+230 .
    3. 梁波,赵冯兵,刘涛,任兆丹. 隧道振动台试验数值模拟及振动输入方法分析. 重庆交通大学学报(自然科学版). 2023(02): 67-74 .
    4. 薛光桥,肖明清,封坤,王少锋,薛皓匀,郭文琦. 特大直径双层公路盾构隧道管片-内部结构复合体系横向抗震性能研究. 现代隧道技术. 2023(05): 67-77 .
    5. 陈政,郭春,谌桂舟,赵威,申玉生. 层状围岩隧道交叉结构地震方向敏感性分析. 地震工程与工程振动. 2022(01): 154-168 .
    6. 晏启祥,王二力,张君臣,孙明辉,姚超凡,陈文宇. 列车荷载作用下联络横通道对平行交叉盾构隧道振动影响机制的试验研究. 岩石力学与工程学报. 2022(S1): 2892-2900 .
    7. 许学昭,李兆平,王凯,汪挺,郑昊. 大直径盾构隧道侧壁管片拆除对邻近管片影响. 铁道学报. 2022(06): 154-160 .
    8. 胡威,黄强,李海波,赵星星. 机械法联络通道施工对T接部位沉降影响的实测与数值分析. 施工技术(中英文). 2022(13): 68-74+80 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 47.4 %FULLTEXT: 47.4 %META: 50.4 %META: 50.4 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 0.4 %其他: 0.4 %Seattle: 0.2 %Seattle: 0.2 %上海: 1.6 %上海: 1.6 %临汾: 0.4 %临汾: 0.4 %保定: 0.2 %保定: 0.2 %北京: 2.4 %北京: 2.4 %南京: 0.2 %南京: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.2 %天津: 0.2 %宣城: 0.2 %宣城: 0.2 %广州: 0.4 %广州: 0.4 %张家口: 0.8 %张家口: 0.8 %成都: 2.0 %成都: 2.0 %扬州: 0.4 %扬州: 0.4 %杭州: 0.8 %杭州: 0.8 %池州: 0.4 %池州: 0.4 %温州: 0.4 %温州: 0.4 %漯河: 1.2 %漯河: 1.2 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 19.1 %芒廷维尤: 19.1 %芝加哥: 1.2 %芝加哥: 1.2 %茂名: 0.4 %茂名: 0.4 %衡阳: 0.2 %衡阳: 0.2 %西宁: 58.0 %西宁: 58.0 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.0 %运城: 1.0 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.2 %郑州: 0.2 %长沙: 0.8 %长沙: 0.8 %青岛: 0.4 %青岛: 0.4 %其他其他Seattle上海临汾保定北京南京哥伦布嘉兴天津宣城广州张家口成都扬州杭州池州温州漯河石家庄芒廷维尤芝加哥茂名衡阳西宁贵阳运城邯郸郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views(790) PDF downloads(136) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return