
Citation: | ZHANG Weiyu, ZHANG Lindong, YU Yanjun. Review on Key Technologies of Stable Operation for Magnetic Suspension Support-Flywheel System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 627-639. doi: 10.3969/j.issn.0258-2724.20210745 |
Magnetic suspension support-flywheel system is the core component of a flywheel battery system (flywheel energy storage system), its stable operation directly affects the operation quality of the whole flywheel battery device. In order to promote the development of new energy technology in China and accelerate the realization of “dual carbon” goal, based on a large number of cutting-edge research, the complex vibration behavior which affects the operation quality of system is systematically analyzed and summarized. And it is concluded that modal self-excited vibration and forced response vibration are the two main factors leading to the instability of flywheel rotor system. Then based on the two types of unstable factors, the research status of topological structure, dynamic modeling, control strategy, auxiliary protection and other key technologies related to the stable operation of the system are introduced. Moreover, research prospects were proposed for high integration of topological shafting, reasonable ratio of system materials, fault tolerance of auxiliary control, and high reliability of spare bearings. The study provides solutions for the high stability of magnetic suspension support-flywheel system.
为缓解由于城市化进程的提速带来的日益严重的交通拥堵问题,我国聚焦于多样化的城市轨道交通发展,并取得了显著成效[1]. 其中,中低速磁浮交通具有运行安全性高、选线灵活、对环境友好等优点,近年来在国内的发展获得了广泛关注[2],广东清远和湖南凤凰的中低速磁浮线路也正在如火如荼地建设和试运行中. 然而,中低速磁浮车辆的导向功能主要依靠悬浮力的横向分力被动提供,这给车辆通过平曲线实现稳定悬浮、导向和保障良好的动力学性能带来了挑战.
中低速磁浮车辆的电磁力具有固有的开环不稳定特性,车辆与桥梁是一个典型的强耦合非线性系统[3-5],悬浮控制与车辆-桥梁耦合动力学研究获得了研究人员的大量关注. 在悬浮控制方面,众多学者基于自适应控制、滑模控制、模糊控制、卡尔曼滤波器、非线性理论等方法研究了车辆的悬浮稳定性及车辆-桥梁耦合系统的分岔特征[6-10]. 此外,轮轨交通中车辆-轨道耦合动力学理论的日臻完善[11],也促进了磁浮交通在该领域的发展和应用. 基于车辆-桥梁系统耦合振动模型,车速、轨道不平顺、轨道结构、桥梁高度、挠跨比等因素对耦合系统动态性能的影响研究取得了积极的进展[12-17]. 而在曲线通过研究方面,Yim等[18]利用车辆多体动力学模型评估了曲线通过性能,并研究了使横向偏移变化最小的悬浮架设计方向. 赵春发等[19-20]研究了低速磁浮车辆以不同速度通过不同半径曲线时的动态响应,并分析了被动、主动导向方式对悬浮模块横向动态特性的影响. Cui等[21]推导了低速磁浮车辆在直线上和曲线上时的最大承载能力公式,分析了曲线半径、横坡角、车辆重心高度等因素对车辆承载能力的影响. 曾佑文等[22]基于导向力平衡分析了三悬浮架磁浮车辆通过曲线时的运动学规律.
尽管取得了上述进展,但桥梁柔性对中低速磁浮车辆通过平曲线的影响还鲜有报道. 当前,针对车辆通过平曲线的研究通常不考虑桥梁结构的柔性变形,主要基于刚性轨道模型研究车辆系统的曲线通过能力. 鉴于此,本文建立考虑桥梁柔性影响的车辆-桥梁系统耦合动力学模型,模型中采用二维磁轨关系,将车辆视为多刚体系统,研究车辆通过小半径平曲线时桥梁的柔性变形对车辆系统动态响应的影响.
以作者所在团队提出的应用(悬挂)中置式悬浮架技术方案的中低速磁浮车辆为例(该悬浮架的结构组成见图1)[2],考虑车体、悬浮模块、防侧滚梁、吊杆、移动滑台、固定滑台、牵引杆等部件,建立具有如下微分代数方程形式的车辆系统动力学模型[23]:
[M(q)ΦT(q,t)Φ(q,t)0][¨qλ]=[Q(q,˙q,t)+S(q,˙q)−η], | (1) |
式中:q为各刚体的广义坐标;M为各刚体的质量矩阵;S为广义惯量;Q为作用在各刚体上的广义力矩阵;λ为拉格朗日乘子;Ф为约束雅克比矩阵;η为约束条件的加速度矢量;t为时间.
车辆空间动力学模型的拓扑关系如图2所示,图中各刚体的自由度说明见表1,车辆系统共有122个自由度. 表2为车辆的主要计算参数,车辆总重为30 t.
部件 | 纵向 | 横向 | 垂向 | 侧滚 | 点头 | 摇头 | 备注 |
悬浮模块 | xlj | ylj | zlj | αlj | βlj | γlj | j = 1~10 |
防侧滚梁 | γaj | j = 1~10 | |||||
吊杆 | αhj | βhj | j = 1~10 | ||||
车体 | xc | yc | zc | αc | βc | γc | |
移动滑台 | ysj | j = 1~6 | |||||
牵引杆 | βtj | γtj | j = 1~10 |
名称 | 数值 |
车体质量/kg | 17 010 |
车体绕 x/y/z 轴的转动 惯量/(kg•m2) | 19 972/349411/351664 |
悬浮模块质量/kg | 1225 |
悬浮模块绕 x/y/z 轴的转动 惯量/(kg•m2) | 72/914/908 |
防侧滚梁质量/kg | 27.5 |
防侧滚梁绕 x/y/z 轴的转动 惯量/(kg•m2) | 2.28/0.12/2.23 |
悬浮模块左右中心距/mm | 1900 |
空气弹簧水平刚度/(N•m−1) | 1.45 × 105 |
空气弹簧垂向刚度/(N•m−1) | 1.6 × 105 |
根据中低速磁浮交通系统的悬浮原理,悬浮电磁铁位于轨道下方,可在一定范围内进行垂向和横向运动,悬浮力F为线圈电流i和悬浮间隙δ的函数[10],如式(2).
F=μ0AN24(iδ)2, | (2) |
式中:μ0为真空磁导率;A为磁极正对面积;N为线圈匝数.
根据基尔霍夫定律,线圈电流i与控制电压V的关系可写为
V=2iR+μ0AN2δ˙i−μ0AN2iδ2˙δ, | (3) |
式中:R为线圈电阻.
在实际的工程应用中,传感器可同时获得悬浮间隙和加速度信号,但缺少速度信号,一般还需要引入状态观测器来重构速度信号[15]:
˙ˆδ=ˆθ+2ξ0ω0(δ−ˆδ), | (4) |
˙ˆθ=a+ω20(δ−ˆδ), | (5) |
式中:
通过对悬浮间隙和垂向速度进行反馈得到目标悬浮电流ie,并进一步采用比例反馈控制确定控制电压V,如式(6)、(7).
ie=i0+kp(ˆδ−δ0)+ki∫t0(δ−δ0)dτ+kdˆθ, | (6) |
V=ke(ie−i)+2iR, | (7) |
式中:kp、ki、kd、ke、i0、δ0分别为间隙反馈系数、积分系数、速度反馈系数、电流反馈系数、额定悬浮电流、额定悬浮间隙. 相关参数的取值可参考文献[24].
中低速磁浮车辆的运行速度相对较低,没有像上海高速磁浮车辆那样配置专门的导向电磁铁,而是采用了U型电磁铁的设计方案,该方案可使车辆具有被动导向能力. 当悬浮电磁铁与F轨存在横向错位时,悬浮力在垂向和横向方向上的分力Fz、Fy可分别表示为[25]
Fz=F[1+2δπwm−|y|wm+2yπwmtan−1(δy)], | (8) |
Fy=F2δπwm tan−1(yδ), | (9) |
式中:wm和y分别为磁极宽度和电磁铁横向偏移.
由式(2) ~ (9)可搭建出系统的控制逻辑框图,如图3所示.
采用文献[26]给出的三维铁木辛柯梁参数化建立方法,搭建包含直线、缓和曲线和圆曲线的柔性桥梁(均为简支梁)有限元模型,桥梁的弹性模量和泊松比分别取36.5 GPa和0.2,其中圆曲线半径为70.0 m,最大横坡角为6°,如图4(a)所示. 跨径为17.0 m的曲线桥梁前二阶横向和垂向弯曲模态如图4(b)所示,13.20 Hz显然大于90/L (L为跨径),满足《磁浮铁路技术标准(试行)》(TB 10630—2019)[27]对桥梁垂向一阶固有频率的要求.
通过车辆-桥梁耦合系统之间力的平衡及变形协调关系,耦合系统动力学方程可表示为
{Mv..Xv+Cv.Xv+KvXv=Fbv,Mb..Xb+Cb.Xb+KbXb=Fvb, | (10) |
式中:下标v、b分别表示车辆和桥梁;C、K分别为阻尼、刚度矩阵;
建立的车辆-曲线桥梁耦合系统可视化动力学模型如图5所示,并在UM (universal mechanism)中采用基于二阶变步长隐式求解器进行数值计算,该方法对刚柔耦合模型中包含刚性微分代数方程的求解十分有效[28].
为满足车辆通过平曲线时的安全性和平稳性要求,《磁浮铁路技术标准(试行)》(TB 10630—2019)[27]还指出:车辆通过曲线时的未平衡离心加速度不超过0.59 m/s2. 综合考虑横坡角和未平衡离心加速度的影响,车辆运行速度取30 km/h,对车辆通过刚性轨道和柔性桥梁2种模型进行对比计算,并采用文献[16]提到的轨道不平顺谱(见式(11))生成本文仿真计算所需的轨道不平顺样本,如图6所示,高低不平顺幅值不超过3.5 mm.
S(Ω)=ArΩn, | (11) |
式中:
为探究圆曲线桥梁的动态响应特性,图7给出了车辆以30 km/h的速度运行时,17.0 m跨径圆曲线桥梁跨中的动位移、加速度响应时间历程以及加速度频谱计算结果.
从图7中可知:桥梁跨中在垂向上的动位移和加速度响应幅值均比横向的更高(垂向动位移和加速度幅值分别不超过0.8 mm、0.16 m/s2),这主要是因为车辆通过圆曲线时在垂向方向上分解的载荷更大;桥梁跨中的横向、垂向加速度优势频率集中在11.00~15.00 Hz区间,且两个方向的优势频率相同,这是因为电磁铁和F轨之间的悬浮力和导向力具有强耦合关系. 由前述分析,17.0 m跨径圆曲线桥梁的动位移满足2.1节提到的标准和《中低速磁浮交通设计规范》(CJJ/T 262—2017 )[29]中的相关要求,该柔性桥梁模型可以进一步用于与车辆通过刚性轨道(不考虑线路上弹性体的参振作用)模型的对比分析.
图8所示为车辆在刚性轨道和柔性桥梁上运行时电磁铁的横向位移和悬浮间隙响应时程曲线. 图中:#11_f 为控制点#11前端线圈对应位置(即悬浮模块5第3个线圈对应位置);#15_r 为控制点#15后端线圈对应位置(即悬浮模块7第4个线圈对应位置).
计算结果表明,该工况下这两处位置的横向偏移最大,为避免赘述,其余观测点的响应不再给出. 从图8(a)可以看出:车辆在通过缓和曲线和圆曲线的过程中,第3个线圈向曲线内侧偏移,第4个线圈则与之相反,且这两个位置偏移的最大幅值基本相等;观测点的横向位移最大值不超过6.0 mm,电磁铁与F轨不会发生机械碰撞;车辆处在缓和曲线及圆曲线上时,柔性桥梁下的电磁铁横向位移波动比刚性轨道下的计算结果更为剧烈,且悬浮模块 5比悬浮模块 7存在更明显的波动变化差异,这一方面与悬浮模块 5采用移动滑台(悬浮模块 7为固定滑台)多出的横向移动自由度有关,移动滑台处的空气弹簧在横向方向上的阻尼效果相对较弱;另一方面与被动导向方案下控制算法无法提供横向阻尼效果有关. 从图8(b)可以看出:柔性桥梁比刚性轨道作用下的悬浮间隙响应略大,但两者相差较小,这与悬浮控制的主动调节影响有关;悬浮间隙波动范围在 ± 4.0 mm以内,表明车辆通过刚性轨道和柔性桥梁的曲线线路时具有良好的悬浮稳定性.
图9所示为悬浮模块 1上方的移动滑台相对车体和悬浮模块 3、7上的空气弹簧横向位移响应时间历程曲线.
计算结果表明移动滑台相对车体向曲线内侧滑动,柔性桥梁和刚性轨道作用下的最大滑动量分别为190.4、188.2 mm;空气弹簧的横向位移响应在−6.0~5.0 mm之间变化,且车辆在缓和曲线上的空气弹簧横向位移比在圆曲线上更大,这是因为车辆以30.0 km/h的速度通过圆曲线时,车辆的未平衡离心加速度很小. 相比于在刚性轨道上运行,柔性桥梁作用下移动滑台和空气弹簧的横向位移波动更大,且这种差异主要体现在缓和曲线和圆曲线的交界处与前半段圆曲线上.
图10所示为车辆通过圆曲线阶段时的车体地板中心振动加速度时间历程曲线. 整体上看,车辆通过刚性轨道和柔性桥梁的圆曲线时,车体的横向、垂向振动加速度响应幅值均较小,表明车辆在圆曲线上运行时具有较好的平稳性. 此外,从图10中也可以观察出一些区别,柔性桥梁模型下计算得到的车体横向加速度响应波动比刚性轨道模型对应的结果更为剧烈,而在垂向方向上的振动加速度差异并不明显(整体上看,仍然是考虑了柔性桥梁时略大).
进一步地,综合图8 ~ 10的结果可知:车辆通过由柔性桥梁组成的平曲线线路时,电磁铁、移动滑台和空气弹簧等的横向位移均相比刚性轨道模型对应的结果有所加剧,相对而言,悬浮间隙和车体垂向加速度的响应波动的差异较小. 造成这些结果差异的原因主要与磁轨关系和悬浮控制特性有关. 一方面,桥梁在横向和垂向两个方向上的柔性变形将使轨道不平顺相对更加恶劣,而中低速磁浮车辆的导向能力主要依靠电磁铁相对F轨的自动对中效应被动提供,因此尽管桥梁的横向动位移比垂向动位移小,但电磁铁、移动滑台和空气弹簧的横向位移响应在柔性桥梁影响下相比刚性轨道时更大,这也意味着采用刚性轨道模型将高估车辆的曲线通过性能. 另一方面,悬浮控制系统在垂向方向上有主动调节作用,对桥梁的小变形和正常的轨道不平顺具有较好的适应性,故在两种计算模型下车辆系统的垂向响应差异相对较小.
1) 车辆以30 km/h的速度通过圆曲线半径为70.0 m的平曲线时,17.0 m跨径圆曲线桥梁的振动加速度优势频率集中在11.00~15.00 Hz,其自振频率和跨中动位移响应满足相关标准要求. 电磁铁相对F轨的横向位移幅值小于6.0 mm,车辆具备足够的横向安全间隙通过该曲线线路.
2) 相比于刚性轨道线路模型,考虑柔性桥梁作用时,电磁铁、移动滑台、空气弹簧的横向位移以及车体的横向加速度响应更加剧烈,而由于悬浮控制器的主动调节影响,悬浮间隙和车体垂向加速度波动仅略有增大,两种模型所得结果差异较小.
3) 在评估中低速磁浮车辆的平曲线通过能力时,建议在未来的数值计算中考虑柔性桥梁对车辆系统横向动态响应的影响,从而避免高估车辆的曲线通过能力.
致谢:感谢牵引动力国家重点实验室自主研究课题(2020TPL-T01,2020TPL-T04)、河南省轨道交通智能安全工程技术研究中心开放基金(2019KFJJ001)的资助.
[1] |
张维煜,杨恒坤,朱熀秋. 电动汽车用飞轮电池关键技术和技术瓶颈分析[J]. 中国电机工程学报,2018,38(18): 5568-5581.
ZHANG Weiyu, YANG Hengkun, ZHU Huangqiu. Key technologies and technical bottleneck analysis of flywheel battery systems for electric vehicle[J]. Proceedings of the CSEE, 2018, 38(18): 5568-5581.
|
[2] |
PICHOT M A, KAJS J P, MURPHY B R, et al. Active magnetic bearings for energy storage systems for combat vehicles[J]. IEEE Transactions on Magnetics, 2001, 37(1): 318-323. doi: 10.1109/20.911846
|
[3] |
PARK C H, CHOI S K, SON Y S, et al. Development of 5 kWh flywheel energy storage system using MATLAB/xPC target[C]//Proceedings of 2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles: IEEE, 2009: 701-705.
|
[4] |
董瑞. 飞轮电池在分布式电源微网中对电能质量的改善作用[D]. 兰州: 兰州理工大学, 2013.
|
[5] |
KOMORI M, UCHIMURA Y. Improving the dynamics of two types of flywheel energy storage systems with SMBs[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2261-2264. doi: 10.1109/TASC.2005.849626
|
[6] |
MASLEN E H, SCHWEITZER G, BLEULER H, et al. Magnetic bearings—theory, design and application to rotating machinery[M]. Heidelberg: Springer-Verlag, 2009.
|
[7] |
TAKAHASHI N. Reviews of magnetic bearing development in Japan[J]. Journal of System Design and Dynamics, 2013, 7(2): 111-126. doi: 10.1299/jsdd.7.111
|
[8] |
NAYEK B, DAS A S, DUTT J K. Model based estimation of inertial parameters of a rigid rotor having dynamic unbalance on Active Magnetic Bearings in presence of noise[J]. Applied Mathematical Modelling, 2021, 97: 701-720. doi: 10.1016/j.apm.2021.04.015
|
[9] |
姜豪. 舰船电磁轴承-转子系统动力学建模和高频噪声抑制方法研究[D]. 武汉: 海军工程大学, 2019.
|
[10] |
YUBISUI Y, KOBAYASHI S, AMANO R, et al. Effects of nonlinearity of magnetic force on passing through a critical speed of a rotor with a superconducting bearing[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5202205.1-5202205.5.
|
[11] |
张剀,张小章. 磁轴承不平衡控制技术的研究进展[J]. 中国机械工程,2010,21(8): 897-903.
ZHANG Kai, ZHANG Xiaozhang. A review of unbalance control technology of active magnetic bearings[J]. China Mechanical Engineering, 2010, 21(8): 897-903.
|
[12] |
任正义,周元伟,马燕芹,等. 盘式和柱式飞轮转子系统临界转速分析[J]. 储能科学与技术,2018,7(5): 821-827. doi: 10.12028/j.issn.2095-4239.2018.0076
REN Zhengyi, ZHOU Yuanwei, MA Yanqin, et al. Critical speed analysis of disc and column flywheel rotor system[J]. Energy Storage Science and Technology, 2018, 7(5): 821-827. doi: 10.12028/j.issn.2095-4239.2018.0076
|
[13] |
任正义,周元伟,张绍武,等. 转动惯量比对飞轮转子系统稳定性影响[J]. 机械设计与制造,2020(3): 203-206. doi: 10.3969/j.issn.1001-3997.2020.03.049
REN Zhengyi, ZHOU Yuanwei, ZHANG Shaowu, et al. Influence of moment of inertia ratio on stability of flywheel rotor system[J]. Machinery Design & Manufacture, 2020(3): 203-206. doi: 10.3969/j.issn.1001-3997.2020.03.049
|
[14] |
LI X J, ANVARI B, PALAZZOLO A, et al. A utility-scale flywheel energy storage system with a shaftless, hubless, high-strength steel rotor[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6667-6675. doi: 10.1109/TIE.2017.2772205
|
[15] |
张瑞煜,祝长生. 飞轮轴向永磁轴承的径向干扰力分析与控制研究[J]. 机电工程,2019,36(9): 879-885. doi: 10.3969/j.issn.1001-4551.2019.09.001
ZHANG Ruiyu, ZHU Changsheng. Analysis and control of radial disturbing force of the axial permanent magnetic bearing in flywheel[J]. Journal of Mechanical & Electrical Engineering, 2019, 36(9): 879-885. doi: 10.3969/j.issn.1001-4551.2019.09.001
|
[16] |
WERFEL F N, FLOEGEL-DELOR U, RIEDEL T, et al. Towards high-capacity HTS flywheel systems[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(4): 2272-2275. doi: 10.1109/TASC.2010.2048708
|
[17] |
TOH C S, CHEN S L. Design and control of a ring-type flywheel battery system with hybrid Halbach magnetic bearings[C]//Proceedings of 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Besacon: IEEE, 2014: 1558-1562.
|
[18] |
WANG K, WANG D, SHEN Y, et al. Subdomain method for permanent magnet biased homo-polar radial magnetic bearing[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-5.
|
[19] |
李丽君,樊亚洪,袁军. 磁悬浮万向飞轮在卫星姿态机动中的应用[J]. 机械工程学报,2015,51(16): 206-212. doi: 10.3901/JME.2015.16.206
LI Lijun, FAN Yahong, YUAN Jun. Application of magnetically suspended gimbaling flywheel in satellite attitude maneuver[J]. Journal of Mechanical Engineering, 2015, 51(16): 206-212. doi: 10.3901/JME.2015.16.206
|
[20] |
王卫杰,任元,刘强,等. 球面磁悬浮万向飞轮转子轮盘优化设计[J]. 航空学报,2016,37(9): 2874-2883.
WANG Weijie, REN Yuan, LIU Qiang, et al. Optimal design of rotary table for spherical rotor of magnetically suspending gambling flywheel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2874-2883.
|
[21] |
赵航,缪存孝,张立元,等. 磁悬浮径向球面纯电磁磁轴承的设计[J]. 北京航空航天大学学报,2017,43(1): 159-166.
ZHAO Hang, MIAO Cunxiao, ZHANG Liyuan, et al. Maglev electromagnetic radial spherical magnetic bearing design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 159-166.
|
[22] |
缪存孝,赵航,韩天,等. 一种低干扰力矩的三自由度球面磁轴承[J]. 宇航学报,2016,37(12): 1491-1499. doi: 10.3873/j.issn.1000-1328.2016.12.012
MIAO Cunxiao, ZHAO Hang, HAN Tian, et al. Three-degree-of-freedom spherical magnetic bearing with low interference torque[J]. Journal of Astronautics, 2016, 37(12): 1491-1499. doi: 10.3873/j.issn.1000-1328.2016.12.012
|
[23] |
康龙云, 李海滨, 曹秉刚. 一种悬浮飞轮电池: 中国, CN200310118907. X [P]. 2006-04-26.
|
[24] |
ZHANG W Y, YANG H K, CHENG L, et al. Modeling based on exact segmentation of magnetic field for a centripetal force type-magnetic bearing[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7691-7701.
|
[25] |
ZHANG W Y, CHENG L, ZHU H Q. Suspension force error source analysis and multidimensional dynamic model for a centripetal force type-magnetic bearing[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7617-7628. doi: 10.1109/TIE.2019.2946568
|
[26] |
ZHANG W Y, ZHANG L D, LI K, et al. Dynamic correction model considering influence of foundation motions for a centripetal force type-magnetic bearing[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10): 9811-9821. doi: 10.1109/TIE.2020.3028817
|
[27] |
徐旸,时振刚,赵雷,等. 电磁轴承阻尼上限的动态特性分析[J]. 武汉理工大学学报(信息与管理工程版),2010,32(2): 238-240.
XU Yang, SHI Zhengang, ZHAO Lei, et al. Maximum damping limit of active magnetic bearing[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2010, 32(2): 238-240.
|
[28] |
BEHRENS S, FLEMING A J, MOHEIMANI S O R. Passive vibration control via electromagnetic shunt damping[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(1): 118-122. doi: 10.1109/TMECH.2004.835341
|
[29] |
SASAKI M, SUGIURA T. Vibration reduction of rotor supported by superconducting magnetic bearing utilizing electromagnetic shunt damper[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3): 1-4.
|
[30] |
谢振宇,张景亭,高华,等. 带阻尼器磁悬浮轴承转子系统的不平衡响应[J]. 中国机械工程,2009,20(3): 327-330. doi: 10.3321/j.issn:1004-132X.2009.03.017
XIE Zhenyu, ZHANG Jingting, GAO Hua, et al. Unbalance response of active magnetic bearing system with magnetic damper[J]. China Mechanical Engineering, 2009, 20(3): 327-330. doi: 10.3321/j.issn:1004-132X.2009.03.017
|
[31] |
谢振宇,李克雷,赵钦泉,等. 磁悬浮阻尼器对磁悬浮转子系统动态特性影响[J]. 航空动力学报,2008,23(6): 1087-1092.
XIE Zhenyu, LI Kelei, ZHAO Qinquan, et al. Influence of magnetic damper on dynamic characteristics of magnetic bearing system[J]. Journal of Aerospace Power, 2008, 23(6): 1087-1092.
|
[32] |
闻声,胡雄心,于振杰,等. 新型同位阻尼磁轴承模型及其特性研究[J]. 机电工程,2016,33(7): 831-835.
WEN Sheng, HU Xiongxin, YU Zhenjie, et al. Model and characteristics of magnetic bearing with co-located damper[J]. Journal of Mechanical & Electrical Engineering, 2016, 33(7): 831-835.
|
[33] |
PASSENBRUNNER J, JUNGMAYR G, AMRHEIN W. Simulation and optimization of the starting behavior of an active axial bearing with viscoelastic damping support[C]//Proceedings of 2017 IEEE International Electric Machines and Drives Conference. Miami: IEEE, 2017: 1-6.
|
[34] |
ZHANG C, WU P, TSENG K J. FEM analyses for the design and modeling of a novel flywheel energy storage system assisted by integrated magnetic bearing[C]// Proceedings of IEEE International Conference on Electric Machines and Drives. San Antonio: IEEE, 2005: 1157-1164.
|
[35] |
ZINGERLI C M, KOLAR J W. Novel observer based force control for active magnetic bearings[C]// Proceedings of 2010 International Power Electronics Conference. Sapporo: IEEE, 2010: 2189-2196.
|
[36] |
KHAYYAM U, HE B X, HASSAN S U. Active magnetic bearing design and backstepping-adaptive control for high-speed rotors[J]. IOP Conference Series: Materials Science and Engineering, 2020, 853(1): 012025.1-012025.10.
|
[37] |
TANG J Q, WANG K, XIANG B. Stable control of high-speed rotor suspended by superconducting magnetic bearings and active magnetic bearings[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3319-3328. doi: 10.1109/TIE.2016.2542786
|
[38] |
张钢, 李松生, 张建生, 等. 磁悬浮轴承-转子系统的机电耦合动力学模型[J]. 机械科学与技术, 2003, 22(增1): 40-43.
ZHANG Gang, LI Songsheng, ZHANG Jiansheng, et al. Coupled electromechanical dynamic model of rotor-magnetic bearings system[J]. Mechanical Science and Technology, 2003, 22(S1): 40-43.
|
[39] |
HAN B C, CHEN Y L, ZHENG S Q, et al. Robust control for a magnetically suspended control moment gyro with strong gyroscopic effects[C]//Proceedings of 44th Annual Conference of the IEEE Industrial Electronics Society. Washington D. C.: IEEE, 2018: 2440-2446.
|
[40] |
LIN F J, HUANG M S, CHEN S Y. Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system[J]. IET Control Theory & Applications, 2011, 5(11): 1287-1303.
|
[41] |
SONI T, DUTT J K, DAS A S. Dynamic behavior and stability of energy efficient electro-magnetic suspension of rotors involving time delay[J]. Energy, 2021, 231: 120906.1-120906.11.
|
[42] |
KUMAR P, TIWARI R. Development of a novel approach for quantitative estimation of rotor unbalance and misalignment in a rotor system levitated by active magnetic bearings[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2021, 45(3): 769-786. doi: 10.1007/s40997-020-00364-7
|
[43] |
PENG C, FANG J C, CUI P L. Dynamics modeling and measurement of the microvibrations for a magnetically suspended flywheel[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3239-3252. doi: 10.1109/TIM.2015.2459491
|
[44] |
YANG W J, QUÉVAL L, MA G T, et al. A 3-D strong-coupled electromagnetic-thermal model for HTS bulk and its uses to study the dynamic characteristics of a linear HTS maglev bearing[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(6): 1-14.
|
[45] |
杨红进. 车载飞轮电池减振机理研究[D]. 南京: 南京航空航天大学, 2015.
|
[46] |
卢聪慧,胡业发,王晓光. 路面随机激励下车载盘状磁悬浮转子振动的研究[J]. 机械制造,2009,47(9): 21-24. doi: 10.3969/j.issn.1000-4998.2009.09.008
|
[47] |
JARROUX C, MAHFOUD J, DEFOY B, et al. Stability of rotating machinery supported on active magnetic bearings subjected to base excitation[J]. Journal of Vibration and Acoustics, 2020, 142(3): 031004.1-031004.7.
|
[48] |
张薇薇,胡业发. 磁悬浮轴承-转子-基础系统的耦合动力学模型[J]. 机械设计与制造,2008(11): 137-139. doi: 10.3969/j.issn.1001-3997.2008.11.054
ZHANG Weiwei, HU Yefa. Coupled dynamic model of magnetic bearings-rotor-base system[J]. Machinery Design & Manufacture, 2008(11): 137-139. doi: 10.3969/j.issn.1001-3997.2008.11.054
|
[49] |
姜豪,苏振中,王东. 运动平台上磁轴承-转子系统的动力学建模[J]. 电工技术学报,2019,34(23): 4880-4889.
JIANG Hao, SU Zhenzhong, WANG Dong. Dynamic modeling of magnetic bearing-rotor system on moving platform[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4880-4889.
|
[50] |
金光宇,陈劭,徐向波. 车载磁悬浮飞轮电池动力学分析及悬浮研究[J]. 林业机械与木工设备,2018,46(4): 23-28.
JIN Guangyu, CHEN Shao, XU Xiangbo. Dynamic analysis and static suspension research on vehicle-mounted magnetic suspension flywheel batteries[J]. Forestry Machinery & Woodworking Equipment, 2018, 46(4): 23-28.
|
[51] |
高琳,徐宗海,朱凯,等. 锥形磁悬浮轴承的建模与解耦控制[J]. 中国电机工程学报,2013,33(6): 153-160,21.
GAO Lin, XU Zonghai, ZHU Kai, et al. Modeling and decoupling control of conical magnetic bearings[J]. Proceedings of the CSEE, 2013, 33(6): 153-160,21.
|
[52] |
ZHENG S Q, YANG J Y, SONG X D, et al. Tracking compensation control for nutation mode of high-speed rotors with strong gyroscopic effects[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4156-4165. doi: 10.1109/TIE.2017.2767559
|
[53] |
SAHA S, AMRR S M, SAIDI A S, et al. Finite-time adaptive higher-order SMC for the nonlinear five DOF active magnetic bearing system[J]. Electronics, 2021, 10(11): 1333.1-1333.20.
|
[54] |
CHEN L L, ZHU C S, ZHONG Z X, et al. Radial position control for magnetically suspended high-speed flywheel energy storage system with inverse system method and extended 2-DOF PID controller[J]. IET Electric Power Applications, 2020, 14(1): 71-81. doi: 10.1049/iet-epa.2019.0512
|
[55] |
刘彬,房建成,刘刚,等. 磁悬浮飞轮不平衡振动控制方法与试验研究[J]. 机械工程学报,2010,46(12): 188-194. doi: 10.3901/JME.2010.12.188
LIU Bin, FANG Jiancheng, LIU Gang, et al. Unbalance vibration control and experiment research of magnetically suspended flywheels[J]. Journal of Mechanical Engineering, 2010, 46(12): 188-194. doi: 10.3901/JME.2010.12.188
|
[56] |
刘超,刘刚,赵光再. 主被动磁悬浮高速转子系统的自动平衡控制[J]. 光学 精密工程,2015,23(3): 714-722. doi: 10.3788/OPE.20152303.0714
LIU Chao, LIU Gang, ZHAO Guangzai. Autobalancing control of high-speed rotor suspended by active-passive hybrid magnetic bearings[J]. Optics and Precision Engineering, 2015, 23(3): 714-722. doi: 10.3788/OPE.20152303.0714
|
[57] |
张德魁,江伟,赵鸿宾. 磁悬浮轴承系统不平衡振动控制的方法[J]. 清华大学学报(自然科学版),2000,40(10): 28-31. doi: 10.3321/j.issn:1000-0054.2000.10.008
ZHANG Dekui, JIANG Wei, ZHAO Hongbin. Unbalance vibration control methods for active magnetic bearings system[J]. Journal of Tsinghua University (Science and Technology), 2000, 40(10): 28-31. doi: 10.3321/j.issn:1000-0054.2000.10.008
|
[58] |
CHEN S L, LIN S Y, TOH C S. Adaptive unbalance compensation for a three-pole active magnetic bearing system[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2097-2106. doi: 10.1109/TIE.2019.2903747
|
[59] |
LIU G, LI J L, ZHENG S Q, et al. Suppression of synchronous current using double input improved adaptive Notch filter algorithm[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8599-8607. doi: 10.1109/TIE.2019.2947852
|
[60] |
GERAMI A, FITTRO R, KNOSPE C. Improving disturbance rejection in nonlinear active magnetic bearing systems: using lur’e formulation[J]. Journal of Dynamic Systems, Measurement, and Control, 2020, 142(4): 041007.1-041007.8.
|
[61] |
蒋科坚,祝长生,乔晓利,等. 移动载体上电磁轴承-转子系统的基础激励振动主动抑制[J]. 机械工程学报,2014,50(11): 108-118. doi: 10.3901/JME.2014.11.108
JIANG Kejian, ZHU Changsheng, QIAO Xiaoli, et al. Suppressing vibration due to base motion for active magnetic bearings-rotor system equipped on moving carrier[J]. Journal of Mechanical Engineering, 2014, 50(11): 108-118. doi: 10.3901/JME.2014.11.108
|
[62] |
MARX S, NATARAJ C. Suppression of base excitation of rotors on magnetic bearings[J]. International Journal of Rotating Machinery, 2007, 2007: 1-10.
|
[63] |
姜豪,苏振中,王东. 磁轴承基于扩展卡尔曼滤波的改进PID控制算法研究[J]. 电机与控制应用,2018,45(3): 72-77. doi: 10.3969/j.issn.1673-6540.2018.03.013
JIANG Hao, SU Zhenzhong, WANG Dong. Improvement of magnetic bearing based on extended Kalman filter research on PID control algorithm[J]. Electric Machines & Control Application, 2018, 45(3): 72-77. doi: 10.3969/j.issn.1673-6540.2018.03.013
|
[64] |
CUI P L, WANG Q R, LI S, et al. Combined FIR and fractional-order repetitive control for harmonic current suppression of magnetically suspended rotor system[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4828-4835. doi: 10.1109/TIE.2017.2668985
|
[65] |
CUI P L, WANG Q R, ZHANG G X, et al. Hybrid fractional repetitive control for magnetically suspended rotor systems[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3491-3498. doi: 10.1109/TIE.2017.2752119
|
[66] |
江绪鑫,徐龙祥. 基于特征模型的主动磁轴承交叉反馈控制研究[J]. 机械制造与自动化,2020,49(2): 212-215.
JIANG Xuxin, XU Longxiang. Study of characteristic model based cross-feedback control of active magnetic bearing[J]. Machine Building & Automation, 2020, 49(2): 212-215.
|
[67] |
MOLINA L M C, BONFITTO A, GALLUZZI R. Offset-Free Model Predictive Control for a cone-shaped active magnetic bearing system[J]. Mechatronics, 2021, 78: 102612.1-102612.14.
|
[68] |
万金贵,汪希平,夏翠艳,等. 电磁轴承系统中的辅助轴承与振动影响[J]. 哈尔滨轴承,2006,27(3): 6-9. doi: 10.3969/j.issn.1672-4852.2006.03.002
WAN Jingui, WANG Xiping, XIA Cuiyan, et al. Assistant bearing with its vibration effect in active magnetic bearing system[J]. Journal of Harbin Bearing, 2006, 27(3): 6-9. doi: 10.3969/j.issn.1672-4852.2006.03.002
|
[69] |
KONG Y N, XUE Y J, YE J, et al. Analysis on the impact factors of auxiliary bearing in vertical magnetic bearing[C]//Proceedings of 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM). Shanghai: IEEE, 2019: 64-68.
|
[70] |
TANGREDI A, MELI E, RINDI A, et al. Development and experimental validation of auxiliary rolling bearing models for active magnetic bearings (AMBs) applications[J]. International Journal of Rotating Machinery, 2019, 2019: 4675286.1-4675286.19.
|
[71] |
KEOGH P S, YONG W Y. Thermal assessment of dynamic rotor/auxiliary bearing contact events[J]. Journal of Tribology, 2007, 129(1): 143-152. doi: 10.1115/1.2401209
|
[72] |
YU C T, SUN Y M, WANG H C, et al. Dynamic analysis of magnetic bearing rotor dropping on radial and axial integrated auxiliary bearing[J]. Mechanism and Machine Theory, 2019, 140: 622-640. doi: 10.1016/j.mechmachtheory.2019.06.015
|
[73] |
SUN G. Rotor drop and following thermal growth simulations using detailed auxiliary bearing and damper models[J]. Journal of Sound and Vibration, 2006, 289(1/2): 334-359.
|
[74] |
何梁,杨国军,刘兴男,等. 带缓冲垫圈的辅助轴承结构特性研究及仿真分析[J]. 润滑与密封,2016,41(11): 15-19. doi: 10.3969/j.issn.0254-0150.2016.11.004
HE Liang, YANG Guojun, LIU Xingnan, et al. Structure characteristics research of auxiliary bearing with buffer shim and simulation[J]. Lubrication Engineering, 2016, 41(11): 15-19. doi: 10.3969/j.issn.0254-0150.2016.11.004
|
[75] |
COLE M O T, KEOGH P S, BURROWS C R. The dynamic behavior of a rolling element auxiliary bearing following rotor impact[J]. Journal of Tribology, 2002, 124(2): 406-413. doi: 10.1115/1.1430673
|
[76] |
KANG X, PALAZZOLO A, ZHONG W. Auxiliary bearing squeeze film dampers for magnetic bearing supported rotors[J]. Tribology International, 2020, 146: 106181.1-106181.17.
|
[1] | CHEN Minglin, HUANG Bo, XUE Zechen, Zhou Jianting. Steel Caisson Lowering Process for Cross-Sea Bridges Under Complex Marine Conditions and Influence Optimization[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 513-523. doi: 10.3969/j.issn.0258-2724.20230712 |
[2] | ZHANG Pengfei, ZHU Xudong, LEI Xiaoyan. Optimization of Wing Rail Lifting Value for Rigid Frog of Speed-Up Turnout[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 602-610. doi: 10.3969/j.issn.0258-2724.20190488 |
[3] | WANG Yonghong, SANG Songkui, LIU Xueying, ZHANG Mingyi, BAI Xiaoyu. Numerical Simulation of Particle Flow Characteristics of Jacked Pile Penetration in Laminated Clay Soil[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1250-1259. doi: 10.3969/j.issn.0258-2724.20200072 |
[4] | SONG Xiaolin, LÜ Tianhang, PEI Chengjie. Influence of Interface Crack on Impact Dynamic Properties of CRTS III Slab Track-Subgrade System[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 913-920. doi: 10.3969/j.issn.0258-2724.2018.05.006 |
[5] | HOU Bowen, GAO Liang, LIU Qibin. Vehicle-Turnout Coupled Dynamics and Improvement Measures for Heavy Haul Lines[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 604-609. doi: 10.3969/j.issn.0258-2724.2015.04.005 |
[6] | REN Juanjuan, YAN Xiaobo, XU Guanghui, XU Kun. Effects of Contact Loss underneath Concrete Roadbed on Dynamic Performances of Slab Track-Subgrade System[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 961-966. doi: 10.3969/j.issn.0258-2724.2014.06.005 |
[7] | LI Cuijuan, XU Xun, QIANG Shizhong. Dynamic Responses of Super-Long-Span Suspension Bridge with CFRP Cables under Different Structural Design Parameters[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 419-424. doi: 10.3969/j.issn.0258-2724.2014.03.008 |
[8] | YANG Junbin, LIU Xueyi, LIU Yongxiao, DAI Feng. Influence of Seam in Type Ⅰ Slab Ends on Dynamic Characteristics of Track and Vehicle[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 432-437,512. doi: 10.3969/j.issn.0258-2724.2014.03.010 |
[9] | HUANG Lin, LIAOHai-li. Analysis ofFlow Characteristics around H igh-Speed Railway Bridge-Vehicle System under CrossW ind[J]. Journal of Southwest Jiaotong University, 2005, 18(5): 585-590. |
[10] | XIONG Feng, LIUHao-wu. Analysis for Dynam ic Properties ofM odelArch Structure ofConcrete-Filled SteelTube[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 195-199. |
[11] | WUBo, GAO Bo, LUOJian-jun. Numerical Simulation of Reinforcing Effect of Horizontal Drilling Jet-Grouting Pegs on Shenzhen Metro Tunnel between Stations[J]. Journal of Southwest Jiaotong University, 2004, 17(5): 605-608. |
[12] | HUO Hong-fa, YU Qin, HUANG Xie-qing. Numerical Simulation of Dynamical Responses of Assembled Vessel to Explosion Impact Load[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 513-516. |
[13] | ZHONG Hui-hong, TANG Kang-min, HUANG Mao-song. Dynamic Performance of Clayey Railroad Subgrade[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 488-491. |
[14] | SHENHuo-ming, TANG Wei. Analysis of Dynamic Behavior of an Air Compressor Rotor and Contact Strength of the Keys of the Blades[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 637-640. |
[15] | SHENHuo-ming, GAO Shu-ying, SHUBin. A Study on Dynamic Characteristics of Vibrators in Concrete Stirring Bars[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 153-156. |
[16] | SHENHuo-ming, XIShao-zhong. Study on the Nonlinear Dynamic Behavior of Tall Piers of Railway Bridge[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 294-298. |
[17] | QU Ai-ping, GAO Shu-ying. Vibration Characteristics of a 3-Dimensional Beam-Pier-Pile System[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 641-644. |
[18] | Chen Guo, Zhai Wanming. Numerical Simulation of the Stochastic Process of Railway Track Irregularities[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 138-142. |
[19] | Jiang Weihong, Jiang Zhenghong, Wang Bin. High Density Resistivity Imaging Technique and Its Application in Prospecting Diseases of Railway Bed[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 331-336. |
1. | 李丽华,江曙光,梅利芳,刘一鸣. 浸水对重载铁路加筋路基动力特性的影响. 浙江大学学报(工学版). 2024(11): 2364-2375 . ![]() | |
2. | 王威,陆思逵,杨成忠,冯青松. 有砟客专路基结构参数的优化研究. 上海交通大学学报. 2021(01): 48-55 . ![]() | |
3. | 陈伟志,李安洪,胡会星,刘凯文. 横穿古滑坡框架式抗滑支挡结构工程技术研究. 岩石力学与工程学报. 2021(S1): 2861-2875 . ![]() | |
4. | 董捷,孙京华,戎贺伟. 微型桩加固公路路肩数值模拟分析. 河北建筑工程学院学报. 2019(02): 16-19 . ![]() | |
5. | 董捷,杨云,张旭升,马瑶瑶. 重载铁路路基基床不同改良厚度的动力响应研究. 铁道标准设计. 2019(10): 33-39 . ![]() | |
6. | 王苗苗,丰成君,戚帮申,孟静,张鹏,任思起,谭成轩. 考虑断层效应的高铁列车动荷载对地面沉降影响机理研究——以京张高铁怀来段为例. 地质力学学报. 2018(03): 407-415 . ![]() | |
7. | 耿敏,王德斌,李培勇,高超. 加筋路基动力特性的数值模拟研究. 水利与建筑工程学报. 2018(01): 211-215 . ![]() | |
8. | 董正方,朱红云,王超飞,郑彬. 考虑土体非线性的地下结构抗震计算中阻尼比的取值问题. 中国科技论文. 2018(01): 103-108 . ![]() | |
9. | 杨成忠,倪凯. 基于快速拉格朗日的板式无砟轨道路基动力响应研究. 路基工程. 2017(06): 6-10 . ![]() | |
10. | 黄强,叶斌,黄宏伟,张冬梅,张锋. 饱和软土二维-三维列车振动响应对比分析. 西南交通大学学报. 2017(06): 1121-1129 . ![]() | |
11. | 肖东,蒋关鲁,林展展,陈虹羽,孙圣杰. 过渡段地基加固作用对桥台桩工作性状的影响分析. 中南大学学报(自然科学版). 2017(03): 820-829 . ![]() | |
12. | 杨果林,邱明明,杨啸,房以河. 高铁膨胀土新型路堑基床动力特性与参数敏感性. 交通运输工程学报. 2016(01): 63-72 . ![]() | |
13. | 邱明明,杨啸,杨果林,房以河. 云桂高速铁路新型全封闭路堑基床动响应特性研究. 岩土力学. 2016(02): 537-544 . ![]() | |
14. | 杨果林,邱明明,何旭,申权. 膨胀土路堑基床新型防水层振动荷载下服役性能试验研究. 振动与冲击. 2016(05): 1-7+20 . ![]() | |
15. | 杨果林,邱明明,申权,林宇亮. 防排水结构层对铁路基床动力响应的影响研究. 中国铁道科学. 2016(02): 8-16 . ![]() |
部件 | 纵向 | 横向 | 垂向 | 侧滚 | 点头 | 摇头 | 备注 |
悬浮模块 | xlj | ylj | zlj | αlj | βlj | γlj | j = 1~10 |
防侧滚梁 | γaj | j = 1~10 | |||||
吊杆 | αhj | βhj | j = 1~10 | ||||
车体 | xc | yc | zc | αc | βc | γc | |
移动滑台 | ysj | j = 1~6 | |||||
牵引杆 | βtj | γtj | j = 1~10 |
名称 | 数值 |
车体质量/kg | 17 010 |
车体绕 x/y/z 轴的转动 惯量/(kg•m2) | 19 972/349411/351664 |
悬浮模块质量/kg | 1225 |
悬浮模块绕 x/y/z 轴的转动 惯量/(kg•m2) | 72/914/908 |
防侧滚梁质量/kg | 27.5 |
防侧滚梁绕 x/y/z 轴的转动 惯量/(kg•m2) | 2.28/0.12/2.23 |
悬浮模块左右中心距/mm | 1900 |
空气弹簧水平刚度/(N•m−1) | 1.45 × 105 |
空气弹簧垂向刚度/(N•m−1) | 1.6 × 105 |
部件 | 纵向 | 横向 | 垂向 | 侧滚 | 点头 | 摇头 | 备注 |
悬浮模块 | xlj | ylj | zlj | αlj | βlj | γlj | j = 1~10 |
防侧滚梁 | γaj | j = 1~10 | |||||
吊杆 | αhj | βhj | j = 1~10 | ||||
车体 | xc | yc | zc | αc | βc | γc | |
移动滑台 | ysj | j = 1~6 | |||||
牵引杆 | βtj | γtj | j = 1~10 |
名称 | 数值 |
车体质量/kg | 17 010 |
车体绕 x/y/z 轴的转动 惯量/(kg•m2) | 19 972/349411/351664 |
悬浮模块质量/kg | 1225 |
悬浮模块绕 x/y/z 轴的转动 惯量/(kg•m2) | 72/914/908 |
防侧滚梁质量/kg | 27.5 |
防侧滚梁绕 x/y/z 轴的转动 惯量/(kg•m2) | 2.28/0.12/2.23 |
悬浮模块左右中心距/mm | 1900 |
空气弹簧水平刚度/(N•m−1) | 1.45 × 105 |
空气弹簧垂向刚度/(N•m−1) | 1.6 × 105 |