• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
KOU Hao, HE Chuan, CHEN Ziquan, ZHOU Zihan, MENG Wei, XIAO Longge. Damage Evolution Law of Layered Rock Mass Considering Residual Strength[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083
Citation: KOU Hao, HE Chuan, CHEN Ziquan, ZHOU Zihan, MENG Wei, XIAO Longge. Damage Evolution Law of Layered Rock Mass Considering Residual Strength[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083

Damage Evolution Law of Layered Rock Mass Considering Residual Strength

doi: 10.3969/j.issn.0258-2724.20211083
  • Received Date: 28 Dec 2021
  • Rev Recd Date: 21 Apr 2022
  • Available Online: 19 May 2023
  • Publish Date: 23 May 2022
  • In order to describe the damage evolution process of layered rock mass more truly and accurately, a damage constitutive model for layered rock mass considering the residual strength was established, which adopted modified Lemaitre strain equivalence hypothesis, combining the elastic theory of transversely isotropic materials and the damage mechanics theory. The accuracy of the model was verified by the triaxial test data of shale, phyllite, and slate, and the whole process damage evolution law of rock mass with different bedding angles was analyzed. The research results showed that the model could describe the elastic deformation of layered rock mass, but also reflect the post-peak strain softening process well. In the initial loading process, the damage value of rock mass was near zero. With the increase of stress, the damage value showed slow growth, accelerated growth, and decelerated growth, until it reached the residual strength and then stabilized at one. When the bedding angle of the shale was 60°, the damage evolution curve was the steepest, the damage speed was the fastest, and it shale failed first. Because the phyllite was thinner in thickness and lower in strength, it failed first when the bedding angle was 90°. However, the slate was relatively thick and had higher strength, and it failed first when the bedding angle was 45°. The existence of a weak bedding surface of rock mass led to the anisotropy of mechanical properties and failure modes, and the damage evolution law showed remarkable differences.

     

  • loading
  • [1]
    吴永胜,谭忠盛,喻渝,等. 川西北茂县群千枚岩各向异性力学特性[J]. 岩土力学,2018,39(1): 207-215.

    WU Yongsheng, TAN Zhongsheng, YU Yu, et al. Anisotropically mechanical characteristics of Maoxian group phyllite in northwest of Sichuan province[J]. Rock and Soil Mechanics, 2018, 39(1): 207-215.
    [2]
    陈子全,何川,吴迪,等. 高地应力层状软岩隧道大变形预测分级研究[J]. 西南交通大学学报,2018,53(6): 1237-1244. doi: 10.3969/j.issn.0258-2724.2018.06.020

    CHEN Ziquan, HE Chuan, WU Di, et al. Study of large deformation classification criterion for layered soft rock tunnels under high geostress[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1237-1244. doi: 10.3969/j.issn.0258-2724.2018.06.020
    [3]
    刘运思,王世鸣,郭志广,等. 横观各向同性岩体内时损伤本构模型研究[J]. 铁道科学与工程学报,2017,14(7): 1407-1414. doi: 10.3969/j.issn.1672-7029.2017.07.009

    LIU Yunsi, WANG Shiming, GUO Zhiguang, et al. Endchronic damage constitutive model of transversely isotropic rock[J]. Journal of Railway Science and Engineering, 2017, 14(7): 1407-1414. doi: 10.3969/j.issn.1672-7029.2017.07.009
    [4]
    史越,傅鹤林,伍毅敏,等. 层状岩石单轴压缩损伤本构模型研究[J]. 华中科技大学学报(自然科学版),2020,48(9): 126-132.

    SHI Yue, FU Helin, WU Yimin, et al. Study on damage constitutive model of layered rock under uniaxial compression[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2020, 48(9): 126-132.
    [5]
    WANG Z, ZONG Z, QIAO L, et al. Elastoplastic model for transversely isotropic rocks[J]. International Journal of Geomechanics, 2018, 18(2): 04017149.1-04017149.15.
    [6]
    SAROGLOU H, TSIAMBAOS G. A modified Hoek-Brown failure criterion for anisotropic intact rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 223-234. doi: 10.1016/j.ijrmms.2007.05.004
    [7]
    SHI X C, YANG X, MENG Y F, et al. Modified Hoek-Brown failure criterion for anisotropic rocks[J]. Environmental Earth Sciences, 2016, 75(11): 1-11.
    [8]
    LI K H, YIN Z Y, HAN D Y, et al. Size effect and anisotropy in a transversely isotropic rock under compressive conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4639-4662. doi: 10.1007/s00603-021-02558-0
    [9]
    POURAGHA M, EGHBALIAN M, WAN R. Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104154.1-104154.8.
    [10]
    GHOLAMI R, RASOULI V. Mechanical and elastic properties of transversely isotropic slate[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1763-1773. doi: 10.1007/s00603-013-0488-2
    [11]
    衡帅,杨春和,张保平,等. 页岩各向异性特征的试验研究[J]. 岩土力学,2015,36(3): 609-616.

    HENG Shuai, YANG Chunhe, ZHANG Baoping, et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609-616.
    [12]
    储超群,吴顺川,张诗淮,等. 层状砂岩力学行为各向异性与破裂特征[J]. 中南大学学报(自然科学版),2020,51(8): 2232-2246.

    CHU Chaoqun, WU Shunchuan, ZHANG Shihuai, et al. Mechanical behavior anisotropy and fracture characteristics of bedded sandstone[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2232-2246.
    [13]
    邓华锋,王伟,李建林,等. 层状砂岩各向异性力学特性试验研究[J]. 岩石力学与工程学报,2018,37(1): 112-120.

    DENG Huafeng, WANG Wei, LI Jianlin, et al. Experimental study on anisotropic characteristics of bedded sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 112-120.
    [14]
    邓华锋,李涛,李建林,等. 层状岩体各向异性声学和力学参数计算方法研究[J]. 岩石力学与工程学报,2020,39(增1): 2725-2732.

    DENG Huafeng, LI Tao, LI Jianlin, et al. Study on calculation method of anisotropic acoustic and mechanical parameters of layered rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2725-2732.
    [15]
    陈子全,何川,吴迪,等. 深埋碳质千枚岩力学特性及其能量损伤演化机制[J]. 岩土力学,2018,39(2): 445-456.

    CHEN Ziquan, HE Chuan, WU Di, et al. Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite[J]. Rock and Soil Mechanics, 2018, 39(2): 445-456.
    [16]
    刘冬桥,王焯,张晓云. 岩石应变软化变形特性及损伤本构模型研究[J]. 岩土力学,2017,38(10): 2901-2908.

    LIU Dongqiao, WANG Zhuo, ZHANG Xiaoyun. Characteristics of strain softening of rocks and its damage constitutive model[J]. Rock and Soil Mechanics, 2017, 38(10): 2901-2908.
    [17]
    温韬,唐辉明,马俊伟,等. 考虑初始损伤和残余强度的岩石变形过程模拟[J]. 地球科学,2019,44(2): 652-663.

    WEN Tao, TANG Huiming, MA Junwei, et al. Deformation simulation for rock in consideration of initial damage and residual strength[J]. Earth Science, 2019, 44(2): 652-663.
    [18]
    曹文贵,赵衡,李翔,等. 基于残余强度变形阶段特征的岩石变形全过程统计损伤模拟方法[J]. 土木工程学报,2012,45(6): 139-145.

    CAO Wengui, ZHAO Heng, LI Xiang, et al. A statistical damage simulation method for rock full deformation process with consideration of the deformation characteristics of residual strength phase[J]. China Civil Engineering Journal, 2012, 45(6): 139-145.
    [19]
    李海潮,张升. 基于修正Lemaitre应变等价性假设的岩石损伤模型[J]. 岩土力学,2017,38(5): 1321-1326, 1334.

    LI Haichao, ZHAGN Sheng. A constitutive damage model of rock based on the assumption of modified Lemaitre strain equivalence hypothesis[J]. Rock and Soil Mechanics, 2017, 38(5): 1321-1326, 1334.
    [20]
    汪杰,宋卫东,付建新. 考虑节理倾角的岩体损伤本构模型及强度准则[J]. 岩石力学与工程学报,2018,37(10): 2253-2263.

    WANG Jie, SONG Weidong, FU Jianxin. A damage constitutive model and strength criterion of rock mass considering the dip angle of joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2253-2263.
    [21]
    贾长贵,陈军海,郭印同,等. 层状页岩力学特性及其破坏模式研究[J]. 岩土力学,2013,34(增2): 57-61.

    JIA Changgui, CHEN Junhai, GUO Yintong, et al. Research on mechanical behaviors and failure modes of layer shale[J]. Rock and Soil Mechanics, 2013, 34(S2): 57-61.
    [22]
    唐克东,王甲亮,管俊峰,等. 层状岩体在三轴加载下的扩容及塑性应变特性[J]. 水利学报,2021,52(1): 42-50.

    TANG Kedong, WANG Jialiang, GUAN Junfeng, et al. Dilatancy and plastic strain characteristics of layered rock mass under triaxial compressive test[J]. Journal of Hydraulic Engineering, 2021, 52(1): 42-50.
    [23]
    CHEN Y F, WEI K, LIU W, et al. Experimental characterization and micromechanical modelling of anisotropic slates[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3541-3557. doi: 10.1007/s00603-016-1009-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(460) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return