Citation: | GAO Rui, SHI Zhizheng, LIU Yangzepeng, CHEN Jing, ZHANG Ronglong. Experimental Study on Effect of Geogrid on Direct Shear Behavior of Contaminated Ballast[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1185-1191. doi: 10.3969/j.issn.0258-2724.20191142 |
In order to investigate the effect of geogrid on the mechanical properties of clay-contaminated ballast, a series of direct shear tests were carried out on geogrid-reinforced ballast specimens under four normal pressures and three degrees of clay pollution. The effects of geogrid on the shear strength and shear deformation of ballast specimens were compared and analyzed. The reinforcement effect of geogrid on ballast with consideration of clay pollution was studied. The results show that the geogrid can increase the shear strength of clean and clay-contaminated ballast samples, and the peak shear strength reaches 24% when the void contamination index (VCI) is 20%. Ballast shear strength exhibits typical non-linear characteristics, and the relationship between fitting parameters of non-linear strength criterion and pollution degrees can be fitted by an exponential function. The fitting results can be used as the basis for strength estimation of contaminated-ballast in practical engineering. Meanwhile, geogrid can reduce the maximum dilatancy of the sample; it can also reduce the peak dilatancy angle by about 0.7°~3.7°, and achieve its maximum reinforcement effect at the VCI of 20%.
[1] |
HUDSON A, WATSSN G, PEN L L, et al. Remediation of mud pumping on a ballast railway track[C]//The 3rd International Conference on Transportation Geotechnics. Guimarães: Procedia Engineering, 2016, 143: 1043-1050.
|
[2] |
SELIG E T, WATERS J M. Track geotechnology and substructure management[M]. London: Thomas Telford, 1994: 8-9.
|
[3] |
SWETA K, HUSSAINI S K K. Behavior evaluation of geogrid-reinforced ballast-subballast interface under shear condition[J]. Geotextiles and Geomembranes, 2019, 47(1): 23-31. doi: 10.1016/j.geotexmem.2018.09.002
|
[4] |
AKBAR D, MASSOUD P, ASGHAR M A. Effect of sand and clay fouling on the shear strength of railway ballast for different ballast gradations[J]. Granular Matter, 2018, 20(51): 1-14.
|
[5] |
KASHANI H F, HO C L, HYSLIP J P. Fouling and water content influence on the ballast deformation properties[J]. Construction and Building Materials, 2018, 190: 881-895. doi: 10.1016/j.conbuildmat.2018.09.058
|
[6] |
徐旸,高亮,井国庆,等. 脏污对道床剪切性能影响及评估指标的离散元分析[J]. 工程力学,2015,32(8): 96-102. doi: 10.6052/j.issn.1000-4750.2014.01.0051
XU Yang, GAO Liang, JING Guoqing, et al. Shear behavior analysis of fouling railroad ballast by DEM and its evaluation index[J]. Engineering Mechanics, 2015, 32(8): 96-102. doi: 10.6052/j.issn.1000-4750.2014.01.0051
|
[7] |
高亮,徐旸,殷浩. 脏污材质对散体道床剪切力学性能影响的试验研究[J]. 北京交通大学学报,2017,41(1): 1-6. doi: 10.11860/j.issn.1673-0291.2017.01.001
GAO Liang, XU Yang, YIN Hao. Experiment research of shear behavior of railway ballast influenced by different fouling materials[J]. Journal of Beijing Jiaotong University, 2017, 41(1): 1-6. doi: 10.11860/j.issn.1673-0291.2017.01.001
|
[8] |
HUSSAINI S K K, INDRARATNA B, VINOD J S. A laboratory investigation to assess the functioning of railway ballast with and without geogrids[J]. Transportation Geotechnics, 2016, 6: 45-54. doi: 10.1016/j.trgeo.2016.02.001
|
[9] |
FERNANDES G, PALMEIRA E M, GOMES R C. Performance of geosynthetic-reinforced alternative sub-ballast material in a railway track[J]. Geosynthetics International, 2008, 15(5): 311-321. doi: 10.1680/gein.2008.15.5.311
|
[10] |
CHEN C, MCDOWELL G R, THOM N H. Discrete element modelling of cyclic loads of geogrid-reinforced ballast under confined and unconfined conditions[J]. Geotextiles and Geomembranes, 2012, 35: 76-86. doi: 10.1016/j.geotexmem.2012.07.004
|
[11] |
BROWN S F, KWAN J, THOM N H. Identifying the key parameters that influence geogrid reinforcement of railway ballast[J]. Geotextiles and Geomembranes, 2007, 25(6): 326-335. doi: 10.1016/j.geotexmem.2007.06.003
|
[12] |
SWETA K, HUSSAINI S K K. Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions[J]. Geotextiles and Geomembranes, 2018, 46(3): 251-256. doi: 10.1016/j.geotexmem.2017.12.001
|
[13] |
井国庆,黄红梅,常锦秀,等. 清洗后的劣化道砟直剪力学特性分析[J]. 西南交通大学学报,2017,52(6): 1055-1060. doi: 10.3969/j.issn.0258-2724.2017.06.003
JING Guoqing, HUANG Hongmei, CHANG Jinxiu, et al. Analysis of mechanical characteristics of degradation railway ballast by direct shear test[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1055-1060. doi: 10.3969/j.issn.0258-2724.2017.06.003
|
[14] |
王军, 胡惠丽, 刘飞禹, 等. 粒孔比对筋土界面直剪特性的影响[J]. 岩土力学, 2018, 39(增刊2): 115-122.
WANG Jun, HU Huili, LIU Feiyu, et al. Effects of direct shear characteristics of sand-geogrid interface under different aperture ratios[J]. Rock and Soil Mechanics, 2018, 39(S2): 115-122.
|
[15] |
井国庆,强伟乐,常锦秀,等. 针片状指数对道砟直剪力学特性的影响[J]. 西南交通大学学报,2020,55(4): 688-694.
JING Guoqing, QIANG Weile, CHANG Jinxiu, et al. Effect of flakiness-elongation index on shear behavior of railway ballast[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 688-694.
|
[16] |
INDRARATNA B, WIJEWARDENA L S S, BALASUBRAMANIAM A S. Large-scale triaxial testing of greywacke rockfill[J]. Geotechnique, 1993, 43(1): 37-51. doi: 10.1680/geot.1993.43.1.37
|
[17] |
INDRARATNA B, NIMBALKAR S S, TENNAKOON N. The behaviour of ballasted track foundations: track drainage and geosynthetic reinforcement[C]//GeoFlorida 2010: Advances in Analysis, Modeling & Design (GSP 199). West Palm Beach: ASCE, 2010: 2378-2387.
|
[18] |
INDRARATNA B, NGO N T, RUJIKIATKAMJORN C. Behavior of geogrid-reinforced ballast under various levels of fouling[J]. Geotextiles and Geomembranes, 2011, 29: 313-322. doi: 10.1016/j.geotexmem.2011.01.015
|
[19] |
INDRARATNA B, IONESCU D, CHRISTIE H D. Shear behavior of railway ballast based on large-scale triaxial tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 439-449. doi: 10.1061/(ASCE)1090-0241(1998)124:5(439)
|
[20] |
朱学敏,崔晓燕. 桩承式加筋路堤中土工格栅加筋效应的室内试验研究[J]. 河北工程大学学报(自然科学版),2020,37(1): 35-40. doi: 10.3969/j.issn.1673-9469.2020.01.007
ZHU Xueming, CUI xiaoyan. Experimental study on the effect of geogrid reinforcement in pile-supported embankment[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2020, 37(1): 35-40. doi: 10.3969/j.issn.1673-9469.2020.01.007
|
[21] |
苗晨曦. 格栅加筋粗粒料界面细观特性及性能优化研究[D]. 武汉: 华中科技大学, 2016.
|
[22] |
周跃峰,谭国焕,甄伟文. 原状黄土剪缩性测试与理论分析[J]. 岩石力学与工程学报,2015,34(6): 166-173.
ZHOU Yuefeng, THAM L G, YAN W M. Testing and theoretical analysis on contractive behavior of undisturbed loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 166-173.
|
[1] | WU Xin, LUO Xiaoyu, LI Longcan, LIU Yonghong, ZHU Xu, LIN Huali. Acoustic Emission Characteristics of Loose Particles in Direct Shear Test at Different Rates[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 128-136. doi: 10.3969/j.issn.0258-2724.20230179 |
[2] | LIANG Huanwei, XU Chunrong, LIN Yu, WU Jianli, XIA Fuyou, YAN Pengfan, ZHAO Canhui. Shear and Pull-Out Performance of Ribbed Straight-Hooked Rebar Shear Connector[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240226 |
[3] | CHEN Cheng, RAO Wenjin, LI Wenjun, ZHANG Lei, TANG Yuyan. Maintenance Mechanism of Ballast Tamping and Stone-Blowing Using Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 256-263, 306. doi: 10.3969/j.issn.0258-2724.20220171 |
[4] | CHEN Jing, GAO Rui, LIU Yangzepeng, ZHANG Ronglong, SHI Zhizheng. Influence of Various Fouling Materials on Geogrid-Reinforced Ballast Performance[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 200-206. doi: 10.3969/j.issn.0258-2724.20200307 |
[5] | CHEN Jing, GAO Rui, LIU Yangzepeng, SHI Zhizheng, ZHANG Ronglong. Effect of Clay Contamination on Stress-Dilatancy Relationships of Ballast Aggregate[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1201-1207. doi: 10.3969/j.issn.0258-2724.20200627 |
[6] | JIANG Chengcheng, FAN Wen, YUAN Weina. Shear Properties of Paleosol Containing Calcareous ConcretionsBased on Ring Shear Tests[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 809-817. doi: 10.3969/j.issn.0258-2724.20190951 |
[7] | JIA Mincai, ZHAO Shun, ZHANG Zhen. Experimental Study on Creep Characteristics of Structural Soft Clay under Lateral Unloading Condition[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1257-1263. doi: 10.3969/j.issn.0258-2724.20180718 |
[8] | JING Guoqing, QIANG Weile, CHANG Jinxiu, LI Xu. Effect of Flakiness-Elongation Index on Shear Behavior of Railway Ballast[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 688-694. doi: 10.3969/j.issn.0258-2724.20180677 |
[9] | SHAO Guoxia, SU Qian, CHEN Shangyong, BAI Hao, WANG Wubin. Experimental Research on Deformation Characteristics of Piled Raft Foundation under Flexible Load[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 30-37. doi: 10.3969/j.issn.0258-2724.2017.01.005 |
[10] | ZHENG Junjie, ZHOU Yanjun, CAO Wenzhao, LAI Hanjiang, YANG Youbin. Experimental Study of Interface Behavior of Geogrids with Different Aperture Shapes[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 482-488. doi: 10.3969/j.issn.0258-2724.2017.03.007 |
[11] | JING Guoqing, HUANG Hongmei, SHI Xiaoyi, CAI Xiaopei. Triaxial Test and DEM Analysis of Ballast Aggregate with Angularity Breakage[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 216-221. doi: 10.3969/j.issn.0258-2724.2017.02.002 |
[12] | JING Guoqing, HUANG Hongmei, CHANG Jinxiu, QIANG Weile. Analysis of Mechanical Characteristics of Degradation Railway Ballast by Direct Shear Test[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1055-1060. doi: 10.3969/j.issn.0258-2724.2017.06.003 |
[13] | CAO Wenzhao, ZHENG Junjie, ZHOU Yanjun, WU Wenbiao, JIANG Jinguo. Experimental Investigation of Deformation and Geogrid-Soil Interface Behavior of Triaxial Geogrid[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 840-846. doi: 10.3969/j.issn.0258-2724.2016.05.004 |
[14] | CUI Kai, LIN Weikang. Experimental Study on Dynamic Shear Modulus and Damping Ratio for Unsaturated Mixed Soil[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 1033-1040. doi: 10.3969/j.issn.0258-2724.2016.05.028 |
[15] | ZHANG Julian, SHEN Mingrong, LIANG Zhirong. Experimental Study on Shear Strength Characteristics of Irregular Rock Mass Discontinuities[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 993-1000. doi: 10.3969/j.issn.0258-2724.2015.06.004 |
[16] | YANG Bing, CAI Ruiqing, TANG Chi, MA Jianlin, HUHE Aode. Experimental Research on Onset of Muddy Clay Exposed to Unidirectional Flow[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 586-590. doi: 10.3969/j.issn.0258-2724.2012.04.008 |
[17] | LI Peigang, LIU Xueyi, HAO Yuanxing. Damping Characteristics of Ballast Mat on Culvert[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 192-197. doi: 10.3969/j.issn.0258-2724.2012.02.004 |
1. | 王家全,吴新彪,董程锋,张涛艺. 基于SmartRock传感技术的含砂道砟直剪试验研究. 岩土力学. 2025(04): 1060-1070 . ![]() | |
2. | 王学军,邓宇. 基于改进内切圆法的离散道砟颗粒建模对二维道砟休止角和道床沉降的影响研究. 昆明理工大学学报(自然科学版). 2024(03): 116-126 . ![]() | |
3. | 王志杰,蔡永明,齐逸飞,杨广庆,叶朝良. 土工格栅加筋橡胶碎石混合料大型三轴试验研究. 铁道科学与工程学报. 2023(07): 2509-2520 . ![]() | |
4. | 陈宪麦,陈楠,魏子龙,杨飞,尤明熙,王卫东. 循环直剪试验对道砟剪切性能影响的研究. 铁道工程学报. 2023(05): 39-46 . ![]() | |
5. | 陈洪春,徐剑飞,徐祥,梁睿斌,段玉昌,洪磊,李明. 雨水入渗对土工格栅-堆石界面剪切特性影响试验研究. 水利水电技术(中英文). 2023(S2): 254-261 . ![]() | |
6. | 郭云龙,王新雨,廉栋,宛洪宇,井国庆. 摩擦型轨枕道床的横向阻力研究. 西南交通大学学报. 2022(02): 301-305+368 . ![]() | |
7. | 陈宪麦,陈楠,王日吉,李赛,董春敏. 粗、细粒径煤质对道砟颗粒剪切性能的影响. 中南大学学报(自然科学版). 2022(07): 2789-2797 . ![]() | |
8. | 陈静,高睿,刘洋泽鹏,石知政,张荣隆. 黏土脏污对道砟集料的应力-剪胀关系影响. 西南交通大学学报. 2022(06): 1201-1207 . ![]() |