• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
GAO Rui, SHI Zhizheng, LIU Yangzepeng, CHEN Jing, ZHANG Ronglong. Experimental Study on Effect of Geogrid on Direct Shear Behavior of Contaminated Ballast[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1185-1191. doi: 10.3969/j.issn.0258-2724.20191142
Citation: GAO Rui, SHI Zhizheng, LIU Yangzepeng, CHEN Jing, ZHANG Ronglong. Experimental Study on Effect of Geogrid on Direct Shear Behavior of Contaminated Ballast[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1185-1191. doi: 10.3969/j.issn.0258-2724.20191142

Experimental Study on Effect of Geogrid on Direct Shear Behavior of Contaminated Ballast

doi: 10.3969/j.issn.0258-2724.20191142
  • Received Date: 28 Nov 2019
  • Rev Recd Date: 08 May 2020
  • Available Online: 21 Jul 2020
  • Publish Date: 21 Jul 2020
  • In order to investigate the effect of geogrid on the mechanical properties of clay-contaminated ballast, a series of direct shear tests were carried out on geogrid-reinforced ballast specimens under four normal pressures and three degrees of clay pollution. The effects of geogrid on the shear strength and shear deformation of ballast specimens were compared and analyzed. The reinforcement effect of geogrid on ballast with consideration of clay pollution was studied. The results show that the geogrid can increase the shear strength of clean and clay-contaminated ballast samples, and the peak shear strength reaches 24% when the void contamination index (VCI) is 20%. Ballast shear strength exhibits typical non-linear characteristics, and the relationship between fitting parameters of non-linear strength criterion and pollution degrees can be fitted by an exponential function. The fitting results can be used as the basis for strength estimation of contaminated-ballast in practical engineering. Meanwhile, geogrid can reduce the maximum dilatancy of the sample; it can also reduce the peak dilatancy angle by about 0.7°~3.7°, and achieve its maximum reinforcement effect at the VCI of 20%.

     

  • loading
  • [1]
    HUDSON A, WATSSN G, PEN L L, et al. Remediation of mud pumping on a ballast railway track[C]//The 3rd International Conference on Transportation Geotechnics. Guimarães: Procedia Engineering, 2016, 143: 1043-1050.
    [2]
    SELIG E T, WATERS J M. Track geotechnology and substructure management[M]. London: Thomas Telford, 1994: 8-9.
    [3]
    SWETA K, HUSSAINI S K K. Behavior evaluation of geogrid-reinforced ballast-subballast interface under shear condition[J]. Geotextiles and Geomembranes, 2019, 47(1): 23-31. doi: 10.1016/j.geotexmem.2018.09.002
    [4]
    AKBAR D, MASSOUD P, ASGHAR M A. Effect of sand and clay fouling on the shear strength of railway ballast for different ballast gradations[J]. Granular Matter, 2018, 20(51): 1-14.
    [5]
    KASHANI H F, HO C L, HYSLIP J P. Fouling and water content influence on the ballast deformation properties[J]. Construction and Building Materials, 2018, 190: 881-895. doi: 10.1016/j.conbuildmat.2018.09.058
    [6]
    徐旸,高亮,井国庆,等. 脏污对道床剪切性能影响及评估指标的离散元分析[J]. 工程力学,2015,32(8): 96-102. doi: 10.6052/j.issn.1000-4750.2014.01.0051

    XU Yang, GAO Liang, JING Guoqing, et al. Shear behavior analysis of fouling railroad ballast by DEM and its evaluation index[J]. Engineering Mechanics, 2015, 32(8): 96-102. doi: 10.6052/j.issn.1000-4750.2014.01.0051
    [7]
    高亮,徐旸,殷浩. 脏污材质对散体道床剪切力学性能影响的试验研究[J]. 北京交通大学学报,2017,41(1): 1-6. doi: 10.11860/j.issn.1673-0291.2017.01.001

    GAO Liang, XU Yang, YIN Hao. Experiment research of shear behavior of railway ballast influenced by different fouling materials[J]. Journal of Beijing Jiaotong University, 2017, 41(1): 1-6. doi: 10.11860/j.issn.1673-0291.2017.01.001
    [8]
    HUSSAINI S K K, INDRARATNA B, VINOD J S. A laboratory investigation to assess the functioning of railway ballast with and without geogrids[J]. Transportation Geotechnics, 2016, 6: 45-54. doi: 10.1016/j.trgeo.2016.02.001
    [9]
    FERNANDES G, PALMEIRA E M, GOMES R C. Performance of geosynthetic-reinforced alternative sub-ballast material in a railway track[J]. Geosynthetics International, 2008, 15(5): 311-321. doi: 10.1680/gein.2008.15.5.311
    [10]
    CHEN C, MCDOWELL G R, THOM N H. Discrete element modelling of cyclic loads of geogrid-reinforced ballast under confined and unconfined conditions[J]. Geotextiles and Geomembranes, 2012, 35: 76-86. doi: 10.1016/j.geotexmem.2012.07.004
    [11]
    BROWN S F, KWAN J, THOM N H. Identifying the key parameters that influence geogrid reinforcement of railway ballast[J]. Geotextiles and Geomembranes, 2007, 25(6): 326-335. doi: 10.1016/j.geotexmem.2007.06.003
    [12]
    SWETA K, HUSSAINI S K K. Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions[J]. Geotextiles and Geomembranes, 2018, 46(3): 251-256. doi: 10.1016/j.geotexmem.2017.12.001
    [13]
    井国庆,黄红梅,常锦秀,等. 清洗后的劣化道砟直剪力学特性分析[J]. 西南交通大学学报,2017,52(6): 1055-1060. doi: 10.3969/j.issn.0258-2724.2017.06.003

    JING Guoqing, HUANG Hongmei, CHANG Jinxiu, et al. Analysis of mechanical characteristics of degradation railway ballast by direct shear test[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1055-1060. doi: 10.3969/j.issn.0258-2724.2017.06.003
    [14]
    王军, 胡惠丽, 刘飞禹, 等. 粒孔比对筋土界面直剪特性的影响[J]. 岩土力学, 2018, 39(增刊2): 115-122.

    WANG Jun, HU Huili, LIU Feiyu, et al. Effects of direct shear characteristics of sand-geogrid interface under different aperture ratios[J]. Rock and Soil Mechanics, 2018, 39(S2): 115-122.
    [15]
    井国庆,强伟乐,常锦秀,等. 针片状指数对道砟直剪力学特性的影响[J]. 西南交通大学学报,2020,55(4): 688-694.

    JING Guoqing, QIANG Weile, CHANG Jinxiu, et al. Effect of flakiness-elongation index on shear behavior of railway ballast[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 688-694.
    [16]
    INDRARATNA B, WIJEWARDENA L S S, BALASUBRAMANIAM A S. Large-scale triaxial testing of greywacke rockfill[J]. Geotechnique, 1993, 43(1): 37-51. doi: 10.1680/geot.1993.43.1.37
    [17]
    INDRARATNA B, NIMBALKAR S S, TENNAKOON N. The behaviour of ballasted track foundations: track drainage and geosynthetic reinforcement[C]//GeoFlorida 2010: Advances in Analysis, Modeling & Design (GSP 199). West Palm Beach: ASCE, 2010: 2378-2387.
    [18]
    INDRARATNA B, NGO N T, RUJIKIATKAMJORN C. Behavior of geogrid-reinforced ballast under various levels of fouling[J]. Geotextiles and Geomembranes, 2011, 29: 313-322. doi: 10.1016/j.geotexmem.2011.01.015
    [19]
    INDRARATNA B, IONESCU D, CHRISTIE H D. Shear behavior of railway ballast based on large-scale triaxial tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 439-449. doi: 10.1061/(ASCE)1090-0241(1998)124:5(439)
    [20]
    朱学敏,崔晓燕. 桩承式加筋路堤中土工格栅加筋效应的室内试验研究[J]. 河北工程大学学报(自然科学版),2020,37(1): 35-40. doi: 10.3969/j.issn.1673-9469.2020.01.007

    ZHU Xueming, CUI xiaoyan. Experimental study on the effect of geogrid reinforcement in pile-supported embankment[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2020, 37(1): 35-40. doi: 10.3969/j.issn.1673-9469.2020.01.007
    [21]
    苗晨曦. 格栅加筋粗粒料界面细观特性及性能优化研究[D]. 武汉: 华中科技大学, 2016.
    [22]
    周跃峰,谭国焕,甄伟文. 原状黄土剪缩性测试与理论分析[J]. 岩石力学与工程学报,2015,34(6): 166-173.

    ZHOU Yuefeng, THAM L G, YAN W M. Testing and theoretical analysis on contractive behavior of undisturbed loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 166-173.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views(417) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return