• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHU Jin, HUANG Xu, XIONG Ziluo, LI Yongle. Study on Driver’s Sight Line Under Vertical Vortex-Induced Vibration of Long Span Suspension Bridges[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 191-201. doi: 10.3969/j.issn.0258-2724.20210260
Citation: ZHU Jin, HUANG Xu, XIONG Ziluo, LI Yongle. Study on Driver’s Sight Line Under Vertical Vortex-Induced Vibration of Long Span Suspension Bridges[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 191-201. doi: 10.3969/j.issn.0258-2724.20210260

Study on Driver’s Sight Line Under Vertical Vortex-Induced Vibration of Long Span Suspension Bridges

doi: 10.3969/j.issn.0258-2724.20210260
  • Received Date: 13 Apr 2021
  • Rev Recd Date: 23 Sep 2021
  • Available Online: 02 Sep 2022
  • Publish Date: 29 Sep 2021
  • In order to study the driver’s sight line under vertical vortex-induced vibration (VVIV) of long span suspension bridges, a numerical framework of coupled wind-vehicle-bridge system considering VVIV (termed as WVB-VIWW) is proposed by introducing a vortex aerodynamic model into the traditional coupled WVB theory. Based on the proposed framework and with the aid of geometric construction method, the equation of driver’s blind region under VIVV is derived based on a vortex vibration mode with three half-sine-waves. Subsequently, the proposed WVB-VIVV framework and equation of driver’s blind region are applied to a long span suspension bridge which has experienced VVIV. The influence of several key factors, i.e., vehicle type, vehicle speed, and the time instant where vehicle enters the bridge, on the maximum height of driver’s blind region, the total time duration of the driver’s blind region, and the ratio of driver’s blind region is investigated. The results indicate that the maximum height of the driver’s blind region varies periodically, and the period is approximately equal to the time required by the vehicle to travel through a half-sine-wave. The vehicle speed has an insignificant effect on the maximum height of driver’s blind region. Because the driver’s sight line height varies with the vehicle type, the lower the driver’s sight line height, the higher the maximum height of the driver’s blind region. Additionally, the vehicle weight could increase the maximum height of the driver’s blind region by increasing the overall deflection of the bridge span. It is also found that the total time duration of driver’s blind region is insensitive to the time instant where vehicle enters the bridge, but the total time duration of driver’s blind region decreases with the increase of the vehicle speed. Furthermore, the time instant where the vehicle enters or the vehicle speed has barely no effect on the ratio of driver’s blind region. However, the vehicle type has remarkable influence on the ratio of driver’s blind region, e.g., the ratio of driver’s blind region for sedan car and megabus is approximately 21% and 12%, respectively.

     

  • loading
  • [1]
    HOSOMI M, KOBAYASHI H, NITTA Y. Fatigue strength design for vortex-induced oscillation and buffeting of a bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67(4): 227-237.
    [2]
    LARSEN A, ESDAHL S, ANDERSEN J E, et al. Storebælt suspension bridge-vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2/3): 283-296. doi: 10.1016/S0167-6105(00)00054-4
    [3]
    FRANDSEN J B. Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(1): 95-129. doi: 10.1016/S0167-6105(00)00059-3
    [4]
    FUJINO Y, YOSHIDA Y. Wind-induced vibration and control of trans-Tokyo bay crossing bridge[J]. Journal of Structural Engineering, 2002, 128(8): 1012-1025. doi: 10.1061/(ASCE)0733-9445(2002)128:8(1012)
    [5]
    陈政清,黄智文. 大跨度桥梁竖弯涡振限值的主要影响因素分析[J]. 中国公路学报,2015,28(9): 30-37. doi: 10.3969/j.issn.1001-7372.2015.09.005

    CHEN Zhengqing, HUANG Zhiwen. Analysis of main factors influencing allowable magnitude of vertical vortex-induced vibration of long-span bridges[J]. China Journal of Highway and Transport, 2015, 28(9): 30-37. doi: 10.3969/j.issn.1001-7372.2015.09.005
    [6]
    祝自强. 桥梁构件扭转涡激共振的疲劳研究[D]. 长沙: 湖南大学, 2011.
    [7]
    XU K, BI K M, HAN Q, et al. Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: analytical study[J]. Engineering Structures, 2019(182): 101-111.
    [8]
    CAO S G, ZHANG Y, TIAN H, et al. Drive comfort and safety evaluation for vortex-induced vibration of a suspension bridge based on monitoring data[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020(204): 104266.1-104266.12.
    [9]
    陈尚烽. 考虑行车安全性的桥梁竖向涡振限值计算[J]. 中外公路,2019,39(6): 114-117. doi: 10.14048/j.issn.1671-2579.2019.06.024

    CHEN Shangfeng. Computation of threshold vertical vortex-induced vibration of bridges accounting for traffic safety[J]. Journal of China and Foreign Highway, 2019, 39(6): 114-117. doi: 10.14048/j.issn.1671-2579.2019.06.024
    [10]
    中华人民共和国交通运输部. 公路工程技术标准: JTG B01—2003[S]. 北京: 人民交通出版社, 2004.
    [11]
    刘焕举,韩万水,丁晓婷,等. 斜风作用下风-车-桥非线性分析系统建立[J]. 中国公路学报,2018,31(7): 110-118. doi: 10.3969/j.issn.1001-7372.2018.07.009

    LIU Huanju, HAN Wanshui, DING Xiaoting, et al. A nonlinear analysis system for wind-vehicle-bridge under skew wind[J]. China Journal of Highway and Transport, 2018, 31(7): 110-118. doi: 10.3969/j.issn.1001-7372.2018.07.009
    [12]
    李永乐,赵凯,陈宁,等. 风-汽车-桥梁系统耦合振动及行车安全性分析[J]. 工程力学,2012,29(5): 206-212.

    LI Yongle, ZHAO Kai, CHEN Ning, et al. Wind-vehicle-bridge system coupling vibration and traffic safety analysis[J]. Engineering Mechanics, 2012, 29(5): 206-212.
    [13]
    陈宁. 侧风作用下桥上汽车行车安全性及防风措施研究[D]. 成都: 西南交通大学, 2015.
    [14]
    邓露,何维,俞扬,等. 公路车-桥耦合振动的理论和应用研究进展[J]. 中国公路学报,2018,31(7): 38-54. doi: 10.3969/j.issn.1001-7372.2018.07.003

    DENG Lu, HE Wei, YU Yang, et al. Research progress in theory and applications of highway vehicle-bridge coupling vibration[J]. China Journal of Highway and Transport, 2018, 31(7): 38-54. doi: 10.3969/j.issn.1001-7372.2018.07.003
    [15]
    ZHOU Y F, CHEN S R. Vehicle ride comfort analysis with whole-body vibration on long-span bridges subjected to crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016(155): 126-140.
    [16]
    华旭刚,黄智文,陈政清. 大跨度悬索桥的多阶模态竖向涡振与控制[J]. 中国公路学报,2019,32(10): 115-124. doi: 10.19721/j.cnki.1001-7372.2019.10.011

    HUA Xugang, HUANG Zhiwen, CHEN Zhengqing. Multi-mode vertical vortex-induced vibration of suspension bridges and control strategy[J]. China Journal of Highway and Transport, 2019, 32(10): 115-124. doi: 10.19721/j.cnki.1001-7372.2019.10.011
    [17]
    K S Association. Mechanical vibration-road surface profiles-reporting of measured data: ISO 8608[S]. Geneva: [s.n.], 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views(418) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return