Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CHEN Rong, CONG Jianli, GAO Mingyuan, WANG Yuan, WANG Ping. Using Smartphone to Detect Vehicle Running Quality and Its Coordinate Alignment[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 830-839. doi: 10.3969/j.issn.0258-2724.20200756
Citation: CHEN Rong, CONG Jianli, GAO Mingyuan, WANG Yuan, WANG Ping. Using Smartphone to Detect Vehicle Running Quality and Its Coordinate Alignment[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 830-839. doi: 10.3969/j.issn.0258-2724.20200756

Using Smartphone to Detect Vehicle Running Quality and Its Coordinate Alignment

doi: 10.3969/j.issn.0258-2724.20200756
  • Received Date: 09 Nov 2020
  • Rev Recd Date: 17 May 2021
  • Publish Date: 07 Sep 2021
  • As there is angle deviation between the car body coordinate system and smarphone coordinate system, a systematic correction method for the smartphone coordinate alignment is proposed to make smartphone sensor data truly reflect the vibration acceleration of the vehicle body. This method corrects the smartphone vertical acceleration according to gravity direction, and the smartphone horizontal acceleration by means of the orthogonality of the lateral and longitudinal acceleration of the vehicle body. The maximum likelihood principle is used in the estimation of angular deviation to ensure the reliability of smartphone angle correction. Field test results indicate that the detection data of two smartphones obtained a vertical angle deviation of 0.008° and 0.007° relative to gravity direction, the horizontal angle between both smartphones is 29.75°, and the deviation from the test placement angle 30.00° is 0.25°. The amplitude and main frequency of the vehicle body acceleration respectively detected by the smartphone and the high-precision sensor are consistent in time domain and frequency domain.

     

  • [1]
    WANG Y, CONG J L, WANG P, et al. A data-fusion approach for speed estimation and location calibration of a metro train based on low-cost sensors in smartphones[J]. IEEE Sensors Journal, 2019, 19(22): 10744-10752.
    [2]
    WANG P, WANG Y, WANG L, et al. Measurement of carbody vibration in urban rail tril transtit using smartphones[C]//Transportation Research Board 96th Annual Meeting. Washington D C: [s.n.], 2017: 1-15
    [3]
    JOHANNING E, FISCHER S, CHRIST E, et al. Whole-body vibration exposure study in US railroad locomotives—an ergonomic risk assessment[J]. AIHA Journal, 2002, 63(4): 439-446. doi: 10.1080/15428110208984732
    [4]
    LEE J S, CHOI S, KIM S S, et al. A mixed filtering approach for track condition monitoring using accelerometers on the axle box and bogie[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3): 749-758. doi: 10.1109/TIM.2011.2170377
    [5]
    WANG Y T, QIN Y, WEI X K. Track irregularities estimation based on acceleration measurements[C]//Proceedings of 2012 International Conference on Measurement, Information and Control. Harbin: IEEE, 2012: 83-87.
    [6]
    TSUNASHIMA H, KOJIMA T, MARUMO Y, et al. Condition monitoring of railway track and driver using in-service vehicle[C]//4th IET International Conference on Railway Condition Monitoring. Derby: IEE, 2008: 1-6
    [7]
    LEDERMAN G, CHEN S H, GARRETT J H, et al. Track monitoring from the dynamic response of a passing train:a sparse approach[J]. Mechanical Systems and Signal Processing, 2017, 90: 141-153. doi: 10.1016/j.ymssp.2016.12.009
    [8]
    GAO M Y, CONG J L, XIAO J L, et al. Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport[J]. Applied Energy, 2020, 257: 113969.1-113969.19.
    [9]
    GAO M Y, SU C G, CONG J L, et al. Harvesting thermoelectric energy from railway track[J]. Energy, 2019, 180: 315-329. doi: 10.1016/j.energy.2019.05.087
    [10]
    WANG Y, WANG P, WANG X, et al. Position synchronization for track geometry inspection data via big-data fusion and incremental learning[J]. Transportation Research Part C:Emerging Technologies, 2018, 93: 544-565. doi: 10.1016/j.trc.2018.06.018
    [11]
    SONG C, WU J, LIU M, et al. RESen: sensing and evaluating the riding experience based on crowdsourcing by smartphones[C]//2012 8th International Conference on Mobile Ad-hoc and Sensor Networks. Chengdu: IEEE, 2012: 147-152.
    [12]
    HERRERA J C, WORK D B, HERRING R, et al. Evaluation of traffic data obtained via GPS-nabled mobile phones:the Mobile Century field experi-ment[J]. Transportation Research Part C:Emerging Technologies, 2010, 18(4): 568-583. doi: 10.1016/j.trc.2009.10.006
    [13]
    WANG Y, CHEN Y J, YANG J, et al. Determining driver phone use by exploiting smartphone integrated sensors[J]. IEEE Transactions on Mobile Computing, 2016, 15(8): 1965-1981. doi: 10.1109/TMC.2015.2483501
    [14]
    从建力,王源,杨翠平,等. 智能手机检测车辆振动加速度数据预处理方法[J]. 数据采集与处理,2019,34(2): 349-357.

    CONG Jianli, WANG Yuan, YANG Cuiping, et al. Data preprocessing method of vehicle vibration acceleration by smartphone[J]. Journal of Data Acquisition and Processing, 2019, 34(2): 349-357.
    [15]
    罗林, 张格明, 吴旺青, 等. 轮轨系统轨道平顺状态的控制[M]. 北京: 中国铁道出版社, 2006.
    [16]
    KIM Y G, KWON H B, KIM S W, et al. Correlation of ride comfort evaluation methods for railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2003, 217(2): 73-88. doi: 10.1243/095440903765762823
    [17]
    铁道部科学研究院机车车辆研究所. 高速试验列车动力车强度及动力学性能规范: 95J01-L[S]. 北京: 铁道出版社, 2019
  • Relative Articles

    [1]HU Lu, LI Dongjie, CHEN Fei, JIANG Yangsheng. Collaborative Optimization of Vehicle Timetable and Operation Path for Long Tunnel Construction[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230457
    [2]WANG Yanchen, YANG Fei, LI Rongling, ZHOU Tao. Influence of Location Frequency on Travel Mode Extraction Using Cellular Phone Data[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1158-1166. doi: 10.3969/j.issn.0258-2724.20220136
    [3]ZHU Honglin, SONG Shuai, WU Yudong, YANG Mingliang, SHUI Yongbo, DING Weiping. Evaluation of Vehicle Road Impact Sound Quality Based on Time-Frequency Perception Weighting[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 296-303. doi: 10.3969/j.issn.0258-2724.20211060
    [4]DU Xing, TAO Gongquan, YANG Cheng, WEN Zefeng, JIN Xuesong, WU Jun. Influence of Different Rail Cants on Dynamical Characteristics of High-Speed Railway Vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 286-294. doi: 10.3969/j.issn.0258-2724.20210068
    [5]ZHAO Dongbao, FENG Linlin, DENG Yue, CAO Lianhai. Real-time Online Compression Method for Vehicle Trajectory Data Based on Smart Phone Sensors[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 1-10. doi: 10.3969/j.issn.0258-2724.20210136
    [6]YANG Fei, JIANG Haihang, YAO Zhenxing, LIU Haode. Evaluation of Activity Location Recognition Using Cellular Signaling Data[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 928-936. doi: 10.3969/j.issn.0258-2724.20200086
    [7]SUN Xiaojie, YANG Junqi. Information Estimation on Wheelset State and Track Features of Railway Vehicles[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 600-606. doi: 10.3969/j.issn.0258-2724.2017.03.022
    [8]XIAO Feng, TU Wenwen, CHEN Dong. Recognition of Traffic Congestion Based on Mobile Phone Sensor Data[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 553-562. doi: 10.3969/j.issn.0258-2724.2016.03.014
    [9]ZHANG Jianping, HU Minghua, WU Zhenya, ZHANG Ruiping. An Improved Integrated Evaluation Method on Operation Performance of Air Traffic Control Based on BP Network[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 553-558. doi: 10.3969/j.issn.0258-2724.2013.03.025
    [10]HU Minghua, LIU Weidong, . Integrated Evaluation for Operation Performance of Air Traffic Control in Terminal Area[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 341-347. doi: 10.3969/j.issn.0258-2724.2012.02.027
    [11]SONG Qiang, HE You, XIONG Wei. New Fusion Estimation Algorithm for Systematic Errors of Multiple Dissimilar Sensors[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 681-687. doi: 10.3969/j.issn.0258-2724.2011.04.025
    [12]CHE Mao-Ru, ZHANG Wei-Hua, JIN Hua-Song, Shu-Min-Hao, . Influences ofW heelsetM isalignment on Running Safety ofRailway Vehicles[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 12-16. doi: 10. 3969/.j issn. 0258-2724. 2
    [13]CHI Maoru, ZHANG Weihua, JIN Xuesong, ZHU Minhao. Influence of Shape Misalignment of Wheelsets on Stability of Vehicle System[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 621-625.
    [14]LIU Shi-chao. ForecastM odel ofRoad Section Traffic Flow Based onM aximum Likelihood Estimation[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 245-248.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.2 %FULLTEXT: 30.2 %META: 63.7 %META: 63.7 %PDF: 6.1 %PDF: 6.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.7 %其他: 11.7 %其他: 0.5 %其他: 0.5 %Central District: 0.2 %Central District: 0.2 %[]: 0.5 %[]: 0.5 %上海: 0.6 %上海: 0.6 %东莞: 0.2 %东莞: 0.2 %临汾: 0.3 %临汾: 0.3 %丽水: 0.2 %丽水: 0.2 %休斯敦: 0.3 %休斯敦: 0.3 %北京: 4.0 %北京: 4.0 %南京: 0.6 %南京: 0.6 %南通: 0.2 %南通: 0.2 %台州: 0.2 %台州: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %大连: 0.3 %大连: 0.3 %天津: 1.4 %天津: 1.4 %安康: 0.2 %安康: 0.2 %宣城: 0.3 %宣城: 0.3 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %广州: 0.5 %广州: 0.5 %张家口: 5.6 %张家口: 5.6 %悉尼: 0.3 %悉尼: 0.3 %成都: 1.8 %成都: 1.8 %扬州: 0.6 %扬州: 0.6 %揭阳: 0.2 %揭阳: 0.2 %杭州: 0.5 %杭州: 0.5 %武汉: 0.6 %武汉: 0.6 %池州: 1.0 %池州: 1.0 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.5 %济南: 0.5 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.2 %湘潭: 0.2 %漯河: 1.9 %漯河: 1.9 %烟台: 0.2 %烟台: 0.2 %石家庄: 1.1 %石家庄: 1.1 %美国: 0.2 %美国: 0.2 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %芝加哥: 0.8 %芝加哥: 0.8 %西宁: 33.2 %西宁: 33.2 %诺沃克: 1.3 %诺沃克: 1.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.0 %运城: 1.0 %郑州: 0.5 %郑州: 0.5 %重庆: 0.2 %重庆: 0.2 %长沙: 1.3 %长沙: 1.3 %青岛: 1.4 %青岛: 1.4 %韦克舍: 0.5 %韦克舍: 0.5 %黄石: 0.3 %黄石: 0.3 %其他其他Central District[]上海东莞临汾丽水休斯敦北京南京南通台州哥伦布大连天津安康宣城巴音郭楞广州张家口悉尼成都扬州揭阳杭州武汉池州沈阳洛阳济南深圳温州湖州湘潭漯河烟台石家庄美国芒廷维尤芝加哥西宁诺沃克贵阳运城郑州重庆长沙青岛韦克舍黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article views(396) PDF downloads(38) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return