• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
WANG Zhonghao, GUO Xifeng, YANG Xingyu. Bearing Capacity Evaluation of Tunnel-Type Anchorage Based on Artificial Intelligent Algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 534-540. doi: 10.3969/j.issn.0258-2724.20200165
Citation: WANG Zhonghao, GUO Xifeng, YANG Xingyu. Bearing Capacity Evaluation of Tunnel-Type Anchorage Based on Artificial Intelligent Algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 534-540. doi: 10.3969/j.issn.0258-2724.20200165

Bearing Capacity Evaluation of Tunnel-Type Anchorage Based on Artificial Intelligent Algorithm

doi: 10.3969/j.issn.0258-2724.20200165
  • Received Date: 06 Apr 2020
  • Rev Recd Date: 11 Jun 2020
  • Available Online: 08 Feb 2021
  • Publish Date: 15 Jun 2021
  • At present, the tunnel-type anchorage is short of reasonable analytical formula for the evaluation of the bearing capacity, the model test is time-consuming and labor-consuming, and its numerical simulation has poor reliability. To handle the above problems, an artificial intelligence method is presented for predicting the bearing capacity of the tunnel-type anchorage. Starting from its force transmission process, the factors influencing the bearing capacity are analyzed and the evaluation index system of bearing capacity has been determined. Then, given the strong learning prediction ability of least squares support vector machines (LSSVM) and excellent performance of particle swarm optimization (PSO), a PSO-LSSVM model with nonlinear mapping of bearing capacity is established. After training the model with 17 cases of the tunnel-type anchorage as input samples, the optimal combination of kernel parameters and penalty coefficients is determined to be (1,500). Finally, the model is used to predict the bearing capacity of a bridge tunnel-type anchorage and the prediction result is determined as 10.2P. The comparison with the bearing capacity result of 11.0P that is determined by the comprehensive study of the scale model test and numerical simulation method, demonstrate that the predicted result is slightly lower but very close to the result of other method. This also shows that the prediction results of the model are reasonable, reliable and conservative, and the prediction effect is desirable.

     

  • loading
  • 张宜虎,邬爱清,周火明,等. 悬索桥隧道锚承载能力和变形特征研究综述[J]. 岩土力学,2019,40(9): 1-10.

    ZHANG Yihu, WU Aiqing, ZHOU Huoming, et al. Review of bearing capacity and deformation characteristics of tunnel type anchorage for suspension bridge[J]. Rock and Soil Mechanics, 2019, 40(9): 1-10.
    中华人民共和国行业标准编写组. 公路悬索桥设计规范: JTG/TD 65-05—2015[S]. 北京: 人民交通出版社, 2015.
    邬爱清,彭元诚,黄正加,等. 超大跨度悬索桥隧道锚承载特性的岩石力学综合研究[J]. 岩石力学与工程学报,2010,29(3): 433-441.

    WU Aiqing, PENG Yuancheng, HUANG Zhengjia, et al. Rock mechanics comprehensive study of bearing capacity characteristics of tunnel anchorage for super-large span suspension bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 433-441.
    张奇华,李玉婕,余美万,等. 隧道锚围岩抗拔机制及抗拔力计算模式初步研究[J]. 岩土力学,2017,38(3): 810-820.

    ZHANG Qihua, LI Yujie, YU Meiwan, et al. Preliminary study of pullout mechanisms and computational mode of pullout force for rocks surrounding tunnel-type anchorage[J]. Rock and Soil Mechanics, 2017, 38(3): 810-820.
    张奇华,余美万,喻正富,等. 普立特大桥隧道锚现场模型试验研究——抗拔能力试验[J]. 岩石力学与工程学报,2015,34(1): 93-103.

    ZHANG Qihua, YU Meiwan, YU Zhengfu, et al. Field model tests on pullout capacity of tunnel-type anchorages of Puli bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 93-103.
    李栋梁,刘新荣,周火明,等. 下卧软弱夹层的软岩隧道式锚碇承载特性研究[J]. 岩石力学与工程学报,2017,36(10): 2457-2465.

    LI Dongliang, LIU Xinrong, ZHOU Huoming, et al. Bearing behavior of tunnel anchorage in soft rock with an underlying weak interlayer[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2457-2465.
    胡波,赵海滨,王思敬,等. 隧道锚围岩拉拔模型试验研究及数值模拟[J]. 岩土力学,2009,30(6): 1575-1582. doi: 10.3969/j.issn.1000-7598.2009.06.007

    HU Bo, ZHAO Haibin, WANG Sijing, et al. Pull-out model test for tunnel anchorage and numerical analysis[J]. Rock and Soil Mechanics, 2009, 30(6): 1575-1582. doi: 10.3969/j.issn.1000-7598.2009.06.007
    江南,冯君. 铁路悬索桥隧道式锚碇受载破裂力学行为研究[J]. 岩石力学与工程学报,2018,37(7): 1659-1670.

    JIANG Nan, FENG Jun. Damage behavior of tunnel-type anchorages of railway suspension bridges under loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1659-1670.
    王中豪, 郭喜峰, 王帅, 等. 太洪长江大桥南川岸隧道锚碇岩土专项试验研究总报告[R]. 武汉: 长江科学院, 2016.
    王中豪, 杨星宇, 李佰龙. 合川渠江景观大桥北岸隧道锚碇岩土专项试验研究总报告[R]. 武汉: 长江科学院, 2017.
    赵海斌,于新华,彭运动,等. 坝陵河大桥隧道锚围岩力学特性原位试验研究[J]. 河海大学学报(自然科学版),2009,37(6): 680-684.

    ZHAO Haibin, YU Xinhua, PENG Yundong, et al. In situ tests on mechanical properties of rock surrounding tunnel-type anchors of Balinghe bridge[J]. Journal of Hohai University (Natural Sciences), 2009, 37(6): 680-684.
    江南. 铁路悬索桥隧道式锚碇承载机理及计算方法研究[D]. 成都: 西南交通大学, 2014.
    郑志成,徐卫亚,徐飞,等. 基于混合核函数 PSO-LSSVM的边坡变形预测[J]. 岩土力学,2012,33(5): 1421-1426. doi: 10.3969/j.issn.1000-7598.2012.05.022

    ZHENG Zhicheng, XU Weiya, XU Fei, et al. Forecasting of slope displacement based on PSO-LSSVM with mixed kernel[J]. Rock and Soil Mechanics, 2012, 33(5): 1421-1426. doi: 10.3969/j.issn.1000-7598.2012.05.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article views(503) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return