• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SHAO Changjiang, QI Qiming, WEI Wang, XIAO Zhenghao, HE Junming, RAO Gang. Experimental Study on Ductile Seismic Performance of Rectangular Hollow Concrete Columns[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 129-138, 157. doi: 10.3969/j.issn.0258-2724.20200092
Citation: SHAO Changjiang, QI Qiming, WEI Wang, XIAO Zhenghao, HE Junming, RAO Gang. Experimental Study on Ductile Seismic Performance of Rectangular Hollow Concrete Columns[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 129-138, 157. doi: 10.3969/j.issn.0258-2724.20200092

Experimental Study on Ductile Seismic Performance of Rectangular Hollow Concrete Columns

doi: 10.3969/j.issn.0258-2724.20200092
  • Received Date: 11 Mar 2020
  • Accepted Date: 02 Nov 2021
  • Rev Recd Date: 11 Jun 2020
  • Available Online: 16 Nov 2021
  • Publish Date: 18 Jun 2020
  • To deeply explore the seismic damage mechanism and evaluate the ductile capacity of hollow RC columns, square and rectangular hollow specimens with different aspect ratios, longitudinal rebar ratios, and stirrup ratios were tested under quasi-static loading. The crack distribution and damage state were observed. The hysteretic behavior, curvature and displacement ductility were analyzed. According to the experimental data in literature, applicability of the existing plastic hinge formulas to estimate the tip displacement capacity of hollow columns was discussed. The results show that all hollow specimens suffer flexural failure with ductility factor over 5.0, resulting in excellent seismic performance. The shear performance of hollow columns is weaker than that of solid members with the same external size and aspect ratio. The lateral bearing capacity and ultimate displacement can be properly improved by increasing longitudinal rebar ratio. However, the longitudinal steel and stirrup amount exert vague effects on the displacement ductility factor of hollow columns with low axial load ratio. The plastic hinge length of hollow columns increases with increased aspect ratio, longitudinal rebar strength/diameter, or axial load ratio, but decreases with the increment in concrete strength. The influence of stirrup on the plastic hinge is not obvious. The relative errors between the test and calculation of Mander, Sun and JRA models are less than 5%. Mander supplies the best result, which can be used to evaluate the equivalent plastic hinge length of a hollow column. The Paulay-Priestley model, adopted in many codes, overestimates the length of the plastic hinge of hollow members, leading to unsafe seismic design.

     

  • [1]
    宗周红,夏坚,徐绰然. 桥梁高墩抗震研究现状及展望[J]. 东南大学学报(自然科学版),2013,43(2): 445-452.

    ZONG Zhouhong, XIA Jian, XU Chaoran. Seismic study of high piers of large-span bridges:an overview and research development[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(2): 445-452.
    [2]
    中华人民共和国交通运输部. 公路桥梁抗震设计细则: JTG/TB 02-01—2008[S]. 北京: 人民交通出版社, 2008.
    [3]
    中华人民共和国铁道部. 铁路工程抗震设计规范: GB 50111—2006[S]. 北京: 中国计划出版社, 2009.
    [4]
    孙治国,王东升,李宏男,等. 钢筋混凝土空心桥墩应用及抗震性能综述[J]. 交通运输工程学报,2013,13(3): 22-32. doi: 10.3969/j.issn.1671-1637.2013.03.004

    SUN Zhiguo, WANG Dongsheng, LI Hongnan, et al. Application of RC hollow bridge pier and review of seismic behavior research[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 22-32. doi: 10.3969/j.issn.1671-1637.2013.03.004
    [5]
    MANDER J B, PRIESTLEY M J N, PARK R. Behavior of ductile hollow reinforced concrete columns[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1983, 16(4): 273-290. doi: 10.5459/bnzsee.16.4.273-290
    [6]
    YEH Y K, MO Y L, YANG C Y. Full-scale tests on rectangular hollow bridge piers[J]. Materials and Structures, 2002, 35(2): 117-125.
    [7]
    ACI committee. Building code requirements for reinforced concrete: ACI 318-95[S]. Detroit: American Concrete Institute, 1995.
    [8]
    MO Y L, NIEN I C. Seismic performance of hollow high-strength concrete bridge columns[J]. Journal of Bridge Engineering, 2002, 7(6): 338-349. doi: 10.1061/(ASCE)1084-0702(2002)7:6(338)
    [9]
    宋晓东. 桥梁高墩延性抗震性能的理论和试验研究[D]. 上海: 同济大学, 2002.
    [10]
    杜修力,陈明琦,韩强. 钢筋混凝土空心桥墩抗震性能试验研究[J]. 振动与冲击,2011,30(11): 254-259. doi: 10.3969/j.issn.1000-3835.2011.11.051

    DU Xiuli, CHEN Mingqi, HAN Qiang. Experimental evaluation of seismic performance of reinforced concrete hollow bridge columns[J]. Journal of Vibration and Shock, 2011, 30(11): 254-259. doi: 10.3969/j.issn.1000-3835.2011.11.051
    [11]
    罗征,李建中. 低周往复荷载下空心矩形墩抗震性能试验研究[J]. 振动与冲击,2013,32(8): 183-188. doi: 10.3969/j.issn.1000-3835.2013.08.032

    LUO Zheng, LI Jianzhong. Tests for a seismic performance of rectangular hollow thin-walled bridge columns under low-cycle reversed loading[J]. Journal of Vibration and Shock, 2013, 32(8): 183-188. doi: 10.3969/j.issn.1000-3835.2013.08.032
    [12]
    韩强,周雨龙,杜修力. 钢筋混凝土矩形空心桥墩抗震性能[J]. 工程力学,2015,32(3): 28-40.

    HAN Qiang, ZHOU Yulong, DU Xiuli. Seismic performance of reinforced concrete rectangular hollow bridge columns[J]. Engineering Mechanics, 2015, 32(3): 28-40.
    [13]
    宗周红,陈树辉,夏樟华. 钢筋混凝土箱型高墩双向拟静力试验研究[J]. 防灾减灾工程学报,2010,30(4): 369-374.

    ZONG Zhouhong, CHEN Shuhui, XIA Zhanghua. Bi-axial quasi-static testing research of high hollow reinforced concrete piers[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(4): 369-374.
    [14]
    HAN Q, DU X L, ZHOU Y H, et al. Experimental study of hollow rectangular bridge column performance under vertical and cyclically bilateral loads[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(3): 433-445. doi: 10.1007/s11803-013-0184-y
    [15]
    PARK R, PAULAY T. Reinforced Concrete Structures [M]. New York: John Wiley & Sons, 1975.
    [16]
    PRIESTLEY M J N, PARK R. Strength and ductility of reinforced concrete bridge columns under seismic loading[J]. ACI Structural Journal, 1987, 84(1): 61-76.
    [17]
    MANDER J B. Seismic design of bridge columns[D]. Christchurch: University of Canterbury, 1983.
    [18]
    PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: John-Wiley & Sons, 1992.
    [19]
    CALTRANS. Caltrans seismic design criteria: version 1.4[S]. Sacramento: California Department of Transportation, 2006.
    [20]
    WATSON S, PARK R. Simulated seismic load tests on reinforced concrete columns[J]. Journal of Structural Engineering, 1994, 120(6): 1825-1849. doi: 10.1061/(ASCE)0733-9445(1994)120:6(1825)
    [21]
    BERRY M P, LEHMAN D E, LOWES L N. Lumped-plasticity models for performance simulation of bridge columns[J]. ACI Structural Journal, 2008, 10(3): 270-279.
    [22]
    孙治国,王东升,郭迅,等. 钢筋混凝土墩柱等效塑性铰长度研究[J]. 中国公路学报,2011,24(5): 56-64.

    SUN Zhiguo, WANG Dongsheng, GUO Xun, et al. Research on equivalent plastic hinge length of reinforced concrete bridge column[J]. China Journal of Highway and Transport, 2011, 24(5): 56-64.
    [23]
    Japan Road Association. Design specifications for highway bridges, part V: seismic design[S]. Tokyo: Japan Road Association, 2002
    [24]
    European Committee for Standardization. Eurocode 8: design provisions for earthquake resistance of structures, part 2: bridges: EN 1998-2[S]. Brussels: European Committee for Standardization (CEN), 2005.
    [25]
    MO Y L, WONG D C, MAEKAWA K. Seismic performance of hollow bridge columns[J]. ACI Structural Journal, 2003, 100(3): 337-348.
  • Relative Articles

    [1]OU Zhijing, CHEN Weilong, CAO Lei. Seismic Performance of Concrete Composite Columns of Ultra-High Performance Concrete Precast Pipe[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 63-71. doi: 10.3969/j.issn.0258-2724.20230073
    [2]ZHAO Hua, YUAN Weiguang, WEI Chengjin, LENG Donghang, CHEN Peng. Experimental Study on Seismic Performance of Concrete Frame Structures Reinforced with High-Strength Steel Bars[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250036
    [3]CUI Haomeng, SHAO Changjiang, WANG Chunyang, XUE Hao, GAO Jian, LI Zhizhong, ZHUANG Weilin, QI Qiming. Experimental Study on Friction and Sliding Performance of Laminated-Rubber Bearings Based on Shear Aging Resistance[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240180
    [4]SU Qiwang, LI Yi, BU Qingtao, CHENG Quanlin, HANI Meree. Experimental Study on Seismic Behavior of Fired Hollow Bricks Infilled Reinforced Concrete Frame with Horizontal Slip Layers[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 223-228, 234. doi: 10.3969/j.issn.0258-2724.20200278
    [5]XU Kunpeng, JING Liping, BIN Jia, CHENG Xinjun, LIANG Haian. Experimental Study on Coefficient Value of Subgrade Reaction in Seismic Analysis of Underground Structures[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1035-1042. doi: 10.3969/j.issn.0258-2724.20191073
    [6]OU Zhijing, XIE Mingqin, QIN Zhiqing, LIN Shangshun, YU Jie. Seismic Performance Test and FEM Analysis of Assembled Concrete Pier with Sleeve and Steel Tube Shear Connector[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1169-1175, 1191. doi: 10.3969/j.issn.0258-2724.20191177
    [7]SHAO Changjiang, QI Qiming, WEI Wang, HU Chenxu. Comparative Analysis of Shear Strength Models in Plastic Hinge Region for Concrete Hollow Piers[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 28-36. doi: 10.3969/j.issn.0258-2724.20190196
    [8]LI Jing, SHAO Changjiang, QIAN Yongjiu, YANG Huaping. Innovative Hysteresis Model and Parameter Identification Method for Reinforced Concrete Rectangular Hollow Piers[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 765-771. doi: 10.3969/j.issn.0258-2724.20190058
    [9]CHEN Weihong, QIAO Zehui, SHOU Weirong. Experimental Study on Seismic Performance of Carbon Fibre Reinforced Plastics-Retrofitted Earthquake-Damaged Non-ductile Reinforced Concrete Frames[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1009-1016. doi: 10.3969/j.issn.0258-2724.20181068
    [10]TAO Yi, GU Jinben, XIN Ren, YAO Jitao. Seismic Performance of Multi-storey Masonry Wall Repaired by Carbon Fiber Reinforced Polymer Grids[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1258-1267. doi: 10.3969/j.issn.0258-2724.20170491
    [11]LI Xi, JIA Hongyu, LI Qian, KANG Rui, CHEN Zhiwei. Effect of Pounding on Elastic-Plastic Dynamic Response of High Pier Bridge in Mountainous Area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 109-118. doi: 10.3969/j.issn.0258-2724.2018.01.014
    [12]FANG Youzhen, DAI Yaping, WANG Chenyu, ZHAO Hongkang, YANG Bin. Test Study on Seismic Performance of PEC Column Fabricated with Thin-Walled Steel Plates-Steel Beam (Reduced Beam Section) Composite Frame[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 715-724. doi: 10.3969/j.issn.0258-2724.2017.04.009
    [13]WEN Yang, MENG Chuncai, GUO Hongling. Performance-Based Experiment Research on Three-Story Concrete-filled Steel Tubular Frame[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 45-53. doi: 10.3969/j.issn.0258-2724.2017.01.007
    [14]SU Qiwang, ZHANG Yan, XU Ziyi, CAI Hongru. Full-Scale Tests on Seismic Behavior of RC Frames Infilled with Hollow Bricks[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 532-539. doi: 10.3969/j.issn.0258-2724.2017.03.013
    [15]SHI Zhou, XIA Zhaoguang, GE Yumei. Dynamic Loading Test of Railway Long-Span Continuous Beam Bridge with High Piers[J]. Journal of Southwest Jiaotong University, 2006, 19(3): 349-354.
    [16]PU Qian-hui, YANG Yong-qing. Research on the Length of Plastic Hinge of Partially Prestressed Beams[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 195-198.
    [17]QU Ai-ping, GAO Shu-ying. Vibration Characteristics of a 3-Dimensional Beam-Pier-Pile System[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 641-644.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 52.7 %FULLTEXT: 52.7 %META: 44.0 %META: 44.0 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %其他: 0.3 %其他: 0.3 %China: 0.7 %China: 0.7 %Seattle: 0.3 %Seattle: 0.3 %Taoyuan District: 0.4 %Taoyuan District: 0.4 %上海: 1.4 %上海: 1.4 %东莞: 0.1 %东莞: 0.1 %临汾: 0.3 %临汾: 0.3 %乐山: 0.1 %乐山: 0.1 %北京: 1.7 %北京: 1.7 %十堰: 0.1 %十堰: 0.1 %南京: 0.7 %南京: 0.7 %南阳: 0.1 %南阳: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.6 %合肥: 0.6 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.6 %哥伦布: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.1 %大连: 0.1 %天津: 0.8 %天津: 0.8 %太原: 0.3 %太原: 0.3 %宣城: 0.1 %宣城: 0.1 %山景城: 0.3 %山景城: 0.3 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %延安: 0.3 %延安: 0.3 %张家口: 4.7 %张家口: 4.7 %成都: 3.3 %成都: 3.3 %扬州: 0.8 %扬州: 0.8 %昆明: 0.1 %昆明: 0.1 %景德镇: 0.1 %景德镇: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 0.3 %杭州: 0.3 %桂林: 0.1 %桂林: 0.1 %武汉: 0.6 %武汉: 0.6 %池州: 0.4 %池州: 0.4 %海口: 0.1 %海口: 0.1 %淄博: 0.3 %淄博: 0.3 %淮南: 0.1 %淮南: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.4 %温州: 0.4 %漯河: 1.0 %漯河: 1.0 %石家庄: 6.5 %石家庄: 6.5 %福州: 0.8 %福州: 0.8 %芒廷维尤: 21.9 %芒廷维尤: 21.9 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.3 %苏州: 0.3 %茂名: 0.3 %茂名: 0.3 %衡阳: 0.1 %衡阳: 0.1 %西宁: 38.0 %西宁: 38.0 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 1.0 %运城: 1.0 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长沙: 1.2 %长沙: 1.2 %青岛: 0.3 %青岛: 0.3 %香港特别行政区: 0.6 %香港特别行政区: 0.6 %黄冈: 0.1 %黄冈: 0.1 %其他其他ChinaSeattleTaoyuan District上海东莞临汾乐山北京十堰南京南阳台州合肥哈尔滨哥伦布嘉兴大连天津太原宣城山景城常州平顶山延安张家口成都扬州昆明景德镇朝阳杭州桂林武汉池州海口淄博淮南深圳温州漯河石家庄福州芒廷维尤芝加哥苏州茂名衡阳西宁诺沃克贵阳运城邯郸郑州重庆长沙青岛香港特别行政区黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views(417) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return