• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
SHAO Changjiang, QI Qiming, WEI Wang, HU Chenxu. Comparative Analysis of Shear Strength Models in Plastic Hinge Region for Concrete Hollow Piers[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 28-36. doi: 10.3969/j.issn.0258-2724.20190196
Citation: SHAO Changjiang, QI Qiming, WEI Wang, HU Chenxu. Comparative Analysis of Shear Strength Models in Plastic Hinge Region for Concrete Hollow Piers[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 28-36. doi: 10.3969/j.issn.0258-2724.20190196

Comparative Analysis of Shear Strength Models in Plastic Hinge Region for Concrete Hollow Piers

doi: 10.3969/j.issn.0258-2724.20190196
  • Received Date: 18 Mar 2019
  • Rev Recd Date: 11 Oct 2019
  • Available Online: 23 Oct 2019
  • Publish Date: 01 Feb 2021
  • Accurate evaluation of shear strength in plastic hinge region is of great significance for seismic design of long-span bridges with tall piers. However, the shear design models for hollow piers are not directly listed in the current codes in China and abroad. The applicability of both the existing formulas for solid piers in the codes and the formulas for solid or hollow columns in literature needs to be further studied. Thus, based on the test results of 25 hollow piers with shear or flexural-shear failure modes, the influencing factors of shear strength in plastic region are analyzed, and the experimental values of shear strength are compared with the calculation results of 15 formulas. The results show that the shear strength of concrete hollow piers increases with an increase in concrete strength, stirrup ratio and axial load ratio, and decreases with an increase in displacement ductility factor and aspect ratio within a certain range, while the influence of the longitudinal reinforcement ratio is not significant. The errors between the test results and the calculated values by formulas of Aschheim, Caltrans, Sezen and Shin are all less than 5%, among which the Sezen model is the most suitable to assess the shear strength in plastic hinge region for hollow piers. The formulas in NZS3101, JRA, JTG/TB 02-01—2008, Eurocode 8, and ACI-318 lead to slightly conservative results, which can be used for shear design of hollow piers; the rest of equations, for overestimation of the shear strength in plastic hinge region, are inappropriate to concrete hollow piers.

     

  • loading
  • MO Y L, NIEN I C. Seismic performance of hollow high-strength concrete bridge columns[J]. Journal of Bridge Engineering, 2002, 7(6): 338-349. doi: 10.1061/(ASCE)1084-0702(2002)7:6(338)
    宗周红,夏坚,徐绰然. 桥梁高墩抗震研究现状及展望[J]. 东南大学学报(自然科学版),2013,43(2): 445-452.

    ZONG Zhouhong, XIA Jian, XU Chaoran. Seismic study of high piers of large-span bridges:an overview and research development[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(2): 445-452.
    王东升,郭迅,孙治国,等. 汶川大地震公路桥梁震害初步调查[J]. 地震工程与工程振动,2009,29(3): 84-94.

    WANG Dongsheng, GUO Xun, SUN Zhiguo, et al. Damage to highway bridges during wenchuan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(3): 84-94.
    孙治国,王东升,郭迅,等. 汶川大地震绵竹市回澜立交桥震害调查[J]. 地震工程与工程振动,2009,29(4): 132-138.

    SUN Zhiguo, WANG Dongsheng, GUO Xun, et al. Damage investigation of huilan interchange in mianzhu after wenchuan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(4): 132-138.
    KIM I H, SUN C H, SHIN M. Concrete contribution to initial shear strength of RC hollow bridge columns[J]. Structural Engineering and Mechanics, 2012, 41(1): 43-65. doi: 10.12989/sem.2012.41.1.043
    LI B, CAO T N T. Reinforced concrete beam analysis supplementing concrete contribution in truss models[J]. Engineering Structures, 2008, 30: 3285-3294. doi: 10.1016/j.engstruct.2008.05.002
    TURMO J, RAMOS G, APARICIO A C. Shear truss analogy for concrete members of solid and hollow circular cross section[J]. Engineering Structures, 2009, 31: 455-465. doi: 10.1016/j.engstruct.2008.09.002
    PRIESTLEY M J N, VERMA R, XIAO Y. Seismic shear strength of reinforced concrete columns[J]. Journal of Structural Engineering, 1994, 120(8): 2310-2329. doi: 10.1061/(ASCE)0733-9445(1994)120:8(2310)
    XIAO Y, MARTIROSSYAN A. Seismic performance of high-strength concrete columns[J]. Journal of Structural Engineering, 1998, 124(3): 241-251. doi: 10.1061/(ASCE)0733-9445(1998)124:3(241)
    KOWALSKY M J, PRIESTLEY M J N. Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions[J]. ACI Structural Journal, 2000, 97(3): 388-396.
    CASSESE P, RICCI P, VERDERAME G M. Experimental study on the seismic performance of existing reinforced concrete bridge piers with hollow rectangular section[J]. Engineering Structures, 2017, 144: 88-106. doi: 10.1016/j.engstruct.2017.04.047
    European Committee for Standardization. Design of structures for earthquake resistance-part 3: assessment and retrofitting of buildings: Eurocode 8—2005[S]. Brussels: Committee European de Normalization, 2005.
    ASCHHEIM A M, MOEHLE J P. Shear strength and deformability of RC bridge columns subjected to inelastic cyclic displacements[R]. Berkeley: University of California at Berkeley, 1992.
    Caltrans. Seismic design criteria (version 1.7): caltrans V1.7—2013[S]. Sacramento: California Department of Transportation, 2013.
    中华人民共和国住房和城乡建设部. 城市桥梁抗震设计规范: CJJ 166—2011[S]. 北京: 中国建筑工业出版社, 2011.
    ACI Committee 318. Building code requirements for structure concrete: ACI-318—2014[S]. Farmington Hills: American Concrete Institute, 2014.
    顾毅云. 强震动下钢筋混凝土桥墩的残余剪切能力研究[D]. 福州: 福州大学, 2003.
    SEZEN H, MOEHLE J P. Shear strength model for lightly reinforced concrete columns[J]. Journal of Structural Engineering, 2004, 130(11): 1692-1703. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1692)
    SHIN M, CHOI Y Y, SUN C H, et al. Shear strength model for reinforced concrete rectangular hollow columns[J]. Engineering Structures, 2013, 56: 958-969. doi: 10.1016/j.engstruct.2013.06.015
    Concrete Design Committee P 3101. Concrete structures standard: NZS 3101—2006[S]. Wellington: Standards New Zealand, 2006.
    Japan Road Association. Design specifications for highway bridges, part V: seismic design: JRA—2002[S]. Tokyo: Japan Road Association, 2002.
    中华人民共和国交通运输部. 公路桥梁抗震设计细则: JTG/TB 02-01—2008[S]. 北京: 人民交通出版社, 2008.
    YEH Y K, MO Y L, YANG C Y. Full-scale tests on rectangular hollow bridge piers[J]. Materials and Structures, 2002, 35: 117-125. doi: 10.1007/BF02482111
    YEH Y K, MO Y L, YANG C Y. Seismic performance of rectangular hollow bridge columns[J]. Journal of Structural Engineering, 2002, 128(1): 60-68. doi: 10.1061/(ASCE)0733-9445(2002)128:1(60)
    MO Y L, YEH Y K, HSIEH D M. Seismic retrofit of hollow rectangular bridge columns[J]. Journal of Composites for Construction, 2004, 8(1): 43-51. doi: 10.1061/(ASCE)1090-0268(2004)8:1(43)
    CALVI G M, PAVESE A, RASULO A, et al. Experimental and numerical studies on the seismic response of RC hollow bridge piers[J]. Bulletin of Earthquake Engineering, 2005, 3(3): 267-297. doi: 10.1007/s10518-005-2240-0
    DELGADO P. Avaliação da segurança estruturalem pontes[D]. Porto: FEUP, 2009.
    Applied Technology Council. Seismic design guidelines for highway bridges: ATC—6[R]. Berkeley: Federal Highway Administration Department of Transtation, 1981.
    Applied Technology Council (ATC-33 Project). NEHRP guidelines for the seismic rehabilitation of buildings: FEMA 273[S]. Washington D. C.: Federal Emergency Management Agency, 1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article views(646) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return